精英家教网 > 高中数学 > 题目详情

【题目】10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的则第二名选手的得分是____

【答案】16

【解析】

10个足球队进行循环赛,胜队得2分,负队得0分,平局的两队各得1即每场产生2分,每个队需要进行10-1=9场比赛,则全胜的队得18分,而最后五队之间赛5×(5-1)÷2=10场至少共得20分,所以第二名的队得分至少为分.

每个队需要进行9场比赛,则全胜的队得:9×2=18(分),而最后五队之间赛10场,至少共得:10×2=20(分),所以第二名的队得分至少为(分).

故答案为16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得分,负者得分,平局两人各得分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:

直线l的参数方程化为极坐标方程;

求直线l与曲线C交点的极坐标其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极小值点,求实数的取值范围;

2)若,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在点处的切线方程;

(2)当时,求函数的单调递增区间;

(3)当时,证明: (其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若fx0)=x0,则称x0fx)的不动点.fx)=x3+ax2+bx+3.

1)当a0时,

i)求fx)的极值点;

)若存在x0既是fx)的极值点,也是fx)的不动点,求b的值;

2)是否存在ab,使得fx)有两个极值点,且这两个极值点均为fx)的不动点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别在轴,轴上运动,,点在线段上,且.

1)求点的轨迹的方程;

2)直线交于两点,,若直线的斜率之和为2,直线是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在分数在以上(含的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本得到成绩的频率分布直方图(见下图).

I)在答题卡上填写下面的列联表,能否有超过的把握认为获奖与学生的文理科有关”?

文科生

理科生

合计

获奖

不获奖

合计

II将上述调査所得的频率视为概率,现从该校参与竞赛的学生中,任意抽取名学生获奖学生人数为,求的分布列及数学期望.

附表及公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角ABC的对边分别为abc,且,则的面积为______

查看答案和解析>>

同步练习册答案