精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:

直线l的参数方程化为极坐标方程;

求直线l与曲线C交点的极坐标其中

【答案】1;(2

【解析】

试题(1)首先消去参数方程的参数,可把参数方程化为普通方程,然后利用公式可把直角坐标方程化为极坐标方程;(2)可把曲线的极坐标方程化为直角坐标方程,然后把直线与圆的直角坐标方程联立解得交点坐标,再把交点的直角坐标化为极坐标,也可把直线与圆的两个极坐标方程联立方程组解得交点的极坐标.

试题解析:(1)将直线 为参数)消去参数,化为普通方程2

代入. 4

2)方法一:的普通方程为. 6

解得:8

所以交点的极坐标分别为:. 10

方法二:由6

得:,又因为8

所以

所以交点的极坐标分别为:. 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知幂函数fx)=(3m22mx在(0+∞)上单调递增,gx)=x24x+t.

1)求实数m的值;

2)当x[19]时,记fx),gx)的值域分别为集合AB,设命题pxA,命题qxB,若命题q是命题p的必要不充分条件,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长都为的中点,边上,.

1)证明:平面平面

2)若是侧面内的动点,且平面.

①在答题卡中作出点的轨迹,并说明轨迹的形状(不需要说明理由);

②求二面角的余弦值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是,甲、丙二人都没有击中目标的概率是,乙、丙二人都击中目标的概率是.甲乙丙是否击中目标相互独立.

1)求乙、丙二人各自击中目标的概率;

2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)函数的图象能否与轴相切?若能,求出实数a,若不能,请说明理由;

)求最大的整数,使得对任意,不等式

恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:

2)若上恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为抛物线上不同的两点,且,点于点.

(1)求的值;

(2)过轴上一点 的直线两点,的准线上的射影分别为的焦点,若,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的则第二名选手的得分是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F,过F的直线lE交于AB两点,与x轴交于点.A为线段的中点,则

A.9B.12C.18D.72

查看答案和解析>>

同步练习册答案