精英家教网 > 高中数学 > 题目详情
如图所示,在空间直角坐标系中有直三棱柱ABCA1B1C1CACC1=2CB,则直线BC1与直线AB1夹角的余弦值为    (  ).
A.B.C.D.
A
不妨令CB=1,则CACC1=2.
可得O(0,0,0),B(0,0,1),C1(0,2,0),A(2,0,0),B1(0,2,1),
=(0,2,-1),=(-2,2,1),
∴cos〈〉=>0.
的夹角即为直线BC1与直线AB1的夹角,
∴直线BC1与直线AB1夹角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(  )
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD­A1B1C1D1中,已知AB=4,AD=3,AA1=2,EF分别是棱ABBC上的点,且EBFB=1.
 
(1)求异面直线EC1FD1所成角的余弦值;
(2)试在面A1B1C1D1上确定一点G,使DG⊥平面D1EF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正四棱锥SABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SOOD,则直线BC与平面PAC所成的角是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,点与点的距离为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在底面边长为2,高为1的正四梭柱ABCD=A1B1C1D1中,E,F分别为BC,C1D1的中点.

(1)求异面直线A1E,CF所成的角;
(2)求平面A1EF与平面ADD1A1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量与向量,则向量的夹角是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案