精英家教网 > 高中数学 > 题目详情
如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.
(1)见解析   (2)
解:(1)证明:由已知得AB=3,AD=6,
∴BD=9.
在矩形ABCD中,∵AE⊥BD,
∴Rt△AOD∽Rt△BAD,
,∴DO=4,∴BO=5.
在△POB中,PB=,PO=4,BO=5,
∴PO2+BO2=PB2
∴PO⊥OB.又PO⊥AE,AE∩OB=O,
∴PO⊥平面ABCE.
(2)∵BO=5,
∴AO==2.
以O为原点,建立如图所示的空间直角坐标系,则P(0,0,4),

A(2,0,0),B(0,5,0),
=(2,0,-4),=(0,5,-4).
设n1=(x,y,z)为平面APB的法向量.

取x=2得n1=(2,4,5).
又n2=(0,1,0)为平面AEP的一个法向量,
∴cos〈n1,n2〉=
故二面角E­AP­B的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,△ABC是正三角形,,平面平面.

(1)证明:
(2)证明:求二面角的余弦值;
(3)设点是平面内的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)如图所示,在三棱锥PABC中,ABBC,平面PAC⊥平面ABCPDAC于点DAD=1,CD=3,PD.
 
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知非零向量a,b及平面α,若向量a是平面α的法向量,则a·b=0是向量b所在直线平行于平面α或在平面α内的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由空间向量构成的向量集合,则向量的模的最小值为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60º,且A1A=3,则A1C的长为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在空间直角坐标系中有直三棱柱ABCA1B1C1CACC1=2CB,则直线BC1与直线AB1夹角的余弦值为    (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若向量,, ,则实数的值为( )
A.B.C.2D.6

查看答案和解析>>

同步练习册答案