函数
.
(1)若
,函数
在区间
上是单调递增函数,求实数
的取值范围;
(2)设
,若对任意
恒成立,求
的取值范围.
(1)
;(2)
.
【解析】
试题分析:(1)由题意可得,当
时,
在区间
上是单调递增函数等价于对于任意的
,
(不妨
),
恒成立,从而将问题转化为
![]()
在
恒成立,即有
,
在
上恒成立,而的
,
,且
,故有
,因此分析可得要使
恒成立,只需
,即有实数
的取值范围是
;(2)由题意分析可得问题等价于在
上,
,从而可将问题转化为在
上,求二次函数
的最大值与最小值,因此需要对二次函数的对称轴
分以下四种情况讨论:①当
,即
;②当
,即
;③当
,即
;④当
,即
,结合二次函数的图像和性质,可分别得到
在以上四种情况下的最大值与最小值,从而可得实数
的取值范围是
.
试题解析:(1)
时,
,
任设
,![]()
, ..2分
,
∵函数
在
上是单调递增函数,∴恒有
,..........3分
∴恒有
,即恒有
, .4分
当
时,
,∴
,∴
,即实数
的取值范围是
..6分
(2)当
时
,
对任意
有
恒成立等价于
在
上的最大值与最小值之差
..7分
当
,即
时,
在
上单调递增,
∴
,
,∴
,与题设矛盾; ..9分
当
,即
时,
在
上单调递减,在
上单调递增,∴
,
,∴
恒成立,
即有
, ..11分
当
,即
时,
在
上单调递减,在
上单调递增,所以
,
,
∴
恒成立,∴
; .13分
当
,即
时,
在
上单调递减,
∴
,
,∴
,与题设矛盾, .15分
综上所述,实数
的取值范围是
. 16分
考点:1.恒成立问题的处理方法;2.二次函数的值域;3.分类讨论的数学思想.
科目:高中数学 来源:2016届江苏省高一下学期期末模拟数学试卷1(解析版) 题型:解答题
在△ABC中,角A,B,C的对边分别为
,
,
,且
.
(1)求角
的值;
(2)若角
,
边上的中线
=
,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com