精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a
b
,其中向量
a
=(m,cosx),
b
=(1+sinx,1),x∈R,且f(
π
2
)=2
(1)求实数m的值;
(2)求函数f(x)的最小值及此时x的值.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用数量积运算可得f(x)=
a
b
=m(1+sinx)+cosx,再利用f(
π
2
)
=2,可得m的值;
(2)由(1)可得f(x)=sinx+cosx+1=
2
sin(x+
π
4
)
+1,再利用正弦函数的单调性研究性即可得出.
解答: 解:(1)f(x)=
a
b
=m(1+sinx)+cosx,
f(
π
2
)
=2,
m(1+sin
π
2
)+cos
π
2
=2,
化为2m=2,解得m=1.
(2)由(1)可得f(x)=sinx+cosx+1
=
2
sin(x+
π
4
)
+1,
x+
π
4
=-
π
2
+2kπ时,即x=2kπ-
4
(k∈Z)时,sin(x+
π
4
)
取得最小值-1,此时f(x)取得最小值-
2
+1.
点评:本题考查了数量积运算、两角和差的正弦公式、正弦函数的单调性有界性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的导函数图象如图所示,若△ABC是以角C为钝角的钝角三角形,则一定成立的是(  )
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

菲特台风重创宁波,志愿者纷纷前往灾区救援.现从四男三女共7名志愿者中任选2名(每名志愿者被选中的机会相等),则2名都是女志愿者的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若点A,B,C不能构成三角形,求实数m满足的条件;
(2)若△ABC为直角三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为S,且|
BC
|2=
CA
CB
+2S.
(1)求B的大小;
(2)若S=
1
2
,且|
BC
-
BA
|=1,试求△ABC最长边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年某市某区高考文科数学成绩抽样统计如下表:
分组频数频率频率/组距
[0,30)60.0060.0002
[30,60)820.0820.0027
[60,90)2560.2560.0085
[90,120)mn0.0145
[120,150]220N0.0073
合计M1
(Ⅰ)求出表中m、n、M、N的值,并根据表中所给数据在如图坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)
(Ⅱ)若2013年北京市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;
(Ⅲ)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,右焦点到直线l:x-y+4=0的距离为
5
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过直线l上的动点P作椭圆C的切线PM、PN,切点分别为M、N,连结MN.
(1)证明:直线MN恒过定点Q;
(2)证明:当MN∥l时,定点Q平分线段MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数g(x)=(x-1)2ex
(1)求g(x)的单调区间;
(2)g(x)=3x在[1,+∞)是否存在两个不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(0,0),B(1,2)两点绕定点P顺时针方向旋转θ角后,分别到A′(4,4),B′(5,2)两点,则cosθ的值为
 

查看答案和解析>>

同步练习册答案