精英家教网 > 高中数学 > 题目详情
已知函数
(I)求函数的单调区间;
(Ⅱ)若,试解答下列两小题.
(i)若不等式对任意的恒成立,求实数的取值范围;
(ii)若是两个不相等的正数,且以,求证:
(I)①当时,递增区间是;②当时,递增区间是,递减区间为;(Ⅱ)(i)实数的取值范围为;(ii)详见试题解析.

试题分析:(I)首先求函数的定义域,再求的导数,令下面分讨论求函数的单调区间;(Ⅱ)(i)先由已知条件,将问题转化为求函数的导数:,由此讨论可得上为减函数,从而求得实数的取值范围;(ii)先根据已知条件把化简为,只要证,构造函数利用导数可得上单调递减,在上单调递增,最终证得
试题解析:(I)解:函数的定义域为
①当时,上恒成立,∴递增区间是
②当时,由可得,∴递增区间是,递减区间为.                                    (6分)
(Ⅱ)(i)解:设
上恒成立,∴上为减函数,∴实数的取值范围为.                              (10分)
(ii)证明:
.设,则
,得上单调递减,在上单调递增
.               (15分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间内的最小值为,求的值.(参考数据

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,其中为常数.
(Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数上的最小值;
(Ⅱ)若函数上既有极大值又有极小值,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递增区间为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在实数集R上的函数满足,且的导数在R上恒有,则不等式的解集是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足,且当时,,则(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线与函数的图象分别交于点,则当达到最小时的值为(      )
A.1B.C.D.

查看答案和解析>>

同步练习册答案