分析 根据韦达定理,先判断出“一元二次方程ax2+bx+c=0有一个正根和一个负根”能推出“ac<0”成立,反之再由韦达定理,判断出“ac<0”成立能推出“一元二次方程ax2+bx+c=0有一个正根和一个负根”,利用充要条件的有关定义得到结论.
解答 解:若“一元二次方程ax2+bx+c=0有一个正根和一个负根”成立,
由韦达定理可得,x1x2=$\frac{c}{a}$<0,
所以ac<0成立,
反之,若“ac<0”成立,
此时一元二次方程ax2+bx+c=0的△>0,此时方程有两个不等的根
由韦达定理可得,x1x2=$\frac{c}{a}$<0,
即方程两个根的符号相反,
即一元二次方程ax2+bx+c=0有一个正根和一个负根
所以“一元二次方程ax2+bx+c=0有一个正根和一个负根”是“ac<0”的充要条件,
故答案为:ac<0.
点评 本题考查的知识点是必要条件、充分条件与充要条件的判断,一元二次方程根的个数与△符号的关系,及韦达定理,其中分别判断命题A⇒命题B与命题B⇒命题A的真假,是解答本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 0 | D. | 1或-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com