分析 (1)由C1D1∥B1A1,知∠MA1B1为异面直线A1M与C1D1所成的角,由此能求出异面直线A1M和C1D1所成的角的正切值.
(2)以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出二面角C1-B1C-D1的正切值.
解答 解:(1)因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M与C1D1所成的角,![]()
因为A1B1⊥平面BCC1B,所以∠A1B1M=90°,
而A1B1=1,${B}_{1}M=\sqrt{{B}_{1}{{C}_{1}}^{2}+M{{C}_{1}}^{2}}$=$\sqrt{2}$,
故tan∠MA1B1=$\frac{{B}_{1}M}{{A}_{1}{B}_{1}}$=$\sqrt{2}$,
即异面直线A1M和C1D1所成的角的正切值为$\sqrt{2}$.
(2)以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,
由AB=AD=1,AA1=2,得:
B1(1,0,2),C(1,1,0),C1(1,1,2),D1(0,1,2),
$\overrightarrow{{B}_{1}C}$=(0,1,-2),$\overrightarrow{{B}_{1}{D}_{1}}$=(-1,1,0),
设平面B1CD1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{B}_{1}C}=y-2z=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}{D}_{1}}=-x+y=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(2,2,1),
平面B1C1C的法向量$\overrightarrow{m}$=(1,0,0),
设二面角C1-B1C-D1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{3}$,sinθ=$\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$,
tanθ=$\frac{sinθ}{cosθ}$=$\frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}}$=$\frac{\sqrt{5}}{2}$,
∴二面角C1-B1C-D1的正切值为$\frac{\sqrt{5}}{2}$.
点评 本题考查异面直线所成角的正切值的求法,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 函数y=-2x2+x在[1,3)上单调递减 | B. | ln3>1 | ||
| C. | 若A∩B=A,则B⊆A | D. | lg2+lg3=lg5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 视觉 听觉 | 视觉记忆能力 | ||||
| 偏低 | 中等 | 偏高 | 超常 | ||
| 听觉 记忆 能力 | 偏低 | 0 | 7 | 5 | 1 |
| 中等 | 1 | 8 | 3 | b | |
| 偏高 | 2 | a | 0 | 1 | |
| 超常 | 0 | 2 | 1 | 1 | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $-\frac{2}{9}$ | C. | $-\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{9}$或-$\frac{4}{9}$ | D. | -$\frac{2}{9}$或$\frac{4}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com