精英家教网 > 高中数学 > 题目详情
若复数(2+i)x+3-i是纯虚数,则实数x的值为
 
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:根据纯虚数的定义,复数的实部等于零,且虚部不等于零,从而求得实数x的值.
解答: 解:∵复数(2+i)x+3-i=2x+3+(x-1)i 是纯虚数,
∴2x+3=0,且 x-1≠0,求得x=-
3
2

故答案为:-
3
2
点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,焦点到椭圆上点的最短距离为2-
3
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x7+x5+bx-5,若f(-100)=8,那么f(100)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-(6+i)x+9+ai=0(a∈R)有实数根b,若复数z满足|
.
z
-a-bi|=2|z|
,则|z|有最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知回归方程为
y
=1.5x+4.5,x∈{1,5,7,13,19},则
.
y
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x=
2
+
π
4
,k∈Z},N={x|x=kπ-
π
4
,k∈Z},则M,N之间的关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C的对边分别为a、b、c,且tanB=
2
ac
a2+c2-b2
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(-1,2)在角α的终边上,则
tanα
cos2α
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+75°)=
1
2
,则cos(α-15°)=(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

同步练习册答案