精英家教网 > 高中数学 > 题目详情
16.在极坐标系中,直线ρsin(θ+$\frac{π}{4}$)=2被圆ρ=3截得的弦长为$2\sqrt{5}$.

分析 求得直线方程及圆的方程,利用点到直线的距离公式求得弦心距d,根据勾股定理即可求得弦长.

解答 解:直线ρsin(θ+$\frac{π}{4}$)=2即$\frac{\sqrt{2}}{2}$ρcosθ+$\frac{\sqrt{2}}{2}$ρsinθ=2,化为直角坐标方程为 x+y-2$\sqrt{2}$=0,
圆ρ=3,即x2+y2=9,表示以原点为圆心、半径为3的圆,
弦心距d=$\frac{丨0+0-2\sqrt{2}丨}{\sqrt{2}}$,可得弦长为2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{9-4}$=2$\sqrt{5}$,
直线ρsin(θ+$\frac{π}{4}$)=2被圆ρ=3截得的弦长2$\sqrt{5}$,
故答案为:$2\sqrt{5}$.

点评 本题考查直线句圆的参数方程及极坐标方程,考查点到直线的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(  )
A.9+16πB.9+18πC.12+18πD.18+18π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由约束条件$\left\{\begin{array}{l}x,y≥0\\ y≤-3x+3\\ y≤kx+1\end{array}\right.$,确定的可行域D能被半径为$\frac{{\sqrt{2}}}{2}$的圆面完全覆盖,则实数k的取值范围是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=2+acos x(a≠0).
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)求函数的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的通项公式an=4n-20,则如图算法的输出结果是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知半径为r的圆内切于某等边三角形,若在该三角形内任取一点,则该点到圆心的距离大于半径r的概率为(  )
A.$\frac{\sqrt{3}π}{9}$B.1-$\frac{\sqrt{3}π}{9}$C.$\frac{\sqrt{3}π}{18}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某种新产品投放市场一段时间后,经过调研获得了时间x(天数)与销售单价y(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{10}({x}_{i}-\overline{x})^{2}$$\sum_{i=1}^{10}({w}_{i}-\overline{w})^{2}$$\sum_{i=1}^{10}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$$\sum_{i=1}^{10}({w}_{i}-\overline{w})({y}_{i}-\overline{y})$
1.6337.80.895.150.92-20.618.40
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}{w}_{i}$.
(Ⅰ)根据散点图判断,$\widehat{y}$=$\widehat{a}$+$\widehat{b}$x与$\widehat{y}$=$\widehat{c}$+$\frac{\widehat{d}}{x}$哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)
(Ⅱ)根据判断结果和表中数据,建立y关于x的回归方程;
(Ⅲ)若该产品的日销售量g(x)(件)与时间x的函数关系为g(x)=$\frac{-100}{x}$+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中心在坐标原点的双曲线C的两条渐近线与圆(x-2)2+y2=3相切,则双曲线的离心率为(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2或$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某三棱锥的三视图如图所示,则该三棱锥的各个侧面中最大的侧面的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案