精英家教网 > 高中数学 > 题目详情
在△ABC中,sinA=
sinB+sinCcosB+cosC
,判断这个三角形的形状.
分析:先根据正余弦定理进行化简得到a=
b+c
c2+a2-b2
2ca
+
a2+b2-c2
2ab
,然后进行整理可得到a2=b2+c2即可判断三角形的形状.
解答:解:应用正弦定理、余弦定理,可得
a=
b+c
c2+a2-b2
2ca
+
a2+b2-c2
2ab

∴b(a2-b2)+c(a2-c2)=bc(b+c).
∴(b+c)a2=(b3+c3)+bc(b+c).
∴a2=b2-bc+c2+bc.∴a2=b2+c2
∴△ABC是直角三角形.
点评:本题主要考查正余弦定理的应用.考查考生的计算能力和对基础知识的灵活运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒为定值的是(  )
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,则∠B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)设AC=
6
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案