精英家教网 > 高中数学 > 题目详情

当a∈{-1,数学公式,1,3}时,幂函数y=xa的图象不可能经过第 ________象限.

二、四
分析:当a∈{-1,,1,3}时进行逐一取值判定幂函数y=xa的图象不可能经过的象限,然后求出它们都不进过的象限即可.
解答:y=x-1的图象不可能经过第二、四象限
的图象不可能经过第二、三、四象限
y=x的图象不可能经过第二、四象限
y=x3的图象不可能经过第二、四象限
综上所述,当a∈{-1,,1,3}时,幂函数y=xa的图象不可能经过第二、四象限
故答案为二、四
点评:本题主要考查了幂函数的图象,以及分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)当a>1时,求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
23
x3-ax2-3x+1
(1)当a=1时,y=f(x)在x=1处切线与坐标轴围成的三角形面积.
(2)若y=f(x)在(-1,1)上为减函数.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ln(x+1).
(1)当a=-
1
4
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(文)(Ⅲ)利用ln(x+1)≤x,求证:ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}<1
(其中n∈N*,e是自然对数的底数).
(Ⅲ)求证:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,x∈R

(Ⅰ)当a=1时,求函数f(x)在点(1,f(1))的切线方程;
(Ⅱ)求函数f(x)在[-1,1]的极值;
(Ⅲ)若在区间(0,
1
2
]
上至少存在一个实数x0,使f(x0)>g(x0)成立,求正实数a的取值范围.

查看答案和解析>>

同步练习册答案