精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

【答案】12;(2;(32

【解析】

试题分析:(1)根据奇函数的性质可得f0=0,由此求得k值;(2)由a0a≠1),f1)<0,求得1a0fx)在R上单调递减,不等式化为,即恒成立,由0求得t的取值范围;(3)由求得a的值,可得 gx)的解析式,令,可知为增函数,t≥f1),令,分类讨论求出ht)的最小值,再由最小值等于2,求得m的值

试题解析:(1∵fx)是定义域为R的奇函数,∴f0)=0∴1-(k1)=0

∴k2

2

单调递减,单调递增,故fx)在R上单调递减。

不等式化为

解得

3

由(1)可知为增函数,

ht)=t22mt2=(tm22m2t≥

m≥,当tm时,htmin2m2=-2∴m2

m<,当t时,htmin3m=-2,解得m>,舍去

综上可知m2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为菱形,且直线又棱 的中点,

(Ⅰ) 求证:直线

(Ⅱ) 求直线与平面的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)loga(ax2x1)(a0a1)

(1) a求函数f(x)的值域.

(2) f(x)在区间上为增函数时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点 ,与抛物线的准线相交于不同的两点 ,且.

(1)求抛物线的方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足.证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x吨,且每吨原材料创造的利润提高0.5x%;若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12(a﹣ x)万元(a>0).
(1)若设备升级后生产这批A产品的利润不低于原来生产该批A产品的利润,求x的取值范围.
(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在其定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点分别为 ),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,,点分别为棱的中点.

(1)求证:∥平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的有几组

(1)y1=y2=x–5; (2)y1=y2=

(3)fx)=xgx)= (4)fx)=Fx)=x

A. 0组 B. 1组 C. 2组 D. 组3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣1:几何证明选讲)
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC= ,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

同步练习册答案