精英家教网 > 高中数学 > 题目详情
已知2sin2α+5cos(-α)=4.求下列各式的值:
(1)sin(
π2
+α);
(2)tan(π-α ).
分析:(1)由条件得(2cosα-1)(cosα-2)=0,因为cosα≠2,所以cosα=
1
2
,所以sin(
π
2
+α)=cosα.
(2)由cosα=
1
2
>0,可得α为第一象限或第四象限角,①当α为第一象限角,求得sinα的值,可得tan(π-α )的值.
②当α为第四象限角,求得sinα的值,可得tan(π-α )的值.
解答:解:(1)由条件得2(1-cos2α)+5cosα=4,即2cos2α-5cosα+2=0,…(2分)
所以(2cosα-1)(cosα-2)=0.
因为cosα≠2,所以cosα=
1
2
,所以sin(
π
2
+α)=cosα=
1
2
.    …(5分)
(2)cosα=
1
2
>0,所以α为第一象限或第四象限角.
①当α为第一象限角,sinα=
1-cos2α
=
3
2
,tan(π-α)=-tanα=-
sinα
cosα
=-
3
.  …(8分)
②当α为第四象限角,sinα=-
1-cos2α
=-
3
2
,tan(π-α)=-tanα=-
sinα
cosα
=
3
.   …(10分)
点评:本题主要考查同角三角函数的基本关系的应用,诱导公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=2sin2(
π
4
+x)-acos2x-1(x∈R,a为常数)
,已知x=
12
时f(x)取到最大值2.
(Ⅰ)求a的值;
(Ⅱ)设y=g(x)与y=f(x)的图象关于直线x=
π
6
对称,求满足x∈(0,π)且f(x)-2g(x)=3的所有x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2(
π
4
+x)+
3
(sin2x-cos2x)
x∈[
π
4
, 
π
2
]

(1)求f(
12
)
的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)-m|<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2
π
6
x+sin(
π
3
x+
π
6
)-1

(I)求f(x)的值域;
(II)试画出函数f(x)在区间[-1,5]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
),(x∈R).
(1)求f(x)的最小正周期;(2)当f(
x0
2
)=
5
3
,且
6
x0
3
,求cosx0的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=2sin2(
π
4
+x)-acos2x-1(x∈R,a为常数)
,已知x=
12
时f(x)取到最大值2.
(Ⅰ)求a的值;
(Ⅱ)设y=g(x)与y=f(x)的图象关于直线x=
π
6
对称,求满足x∈(0,π)且f(x)-2g(x)=3的所有x的值.

查看答案和解析>>

同步练习册答案