精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为$\frac{8}{3}$,求该四棱锥的侧面积.

分析 (1)推导出AB⊥PA,CD⊥PD,从而AB⊥PD,进而AB⊥平面PAD,由此能证明平面PAB⊥平面PAD.
(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,则PO⊥底面ABCD,且AD=$\sqrt{2}a$,PO=$\frac{\sqrt{2}}{2}a$,由四棱锥P-ABCD的体积为$\frac{8}{3}$,求出a=2,由此能求出该四棱锥的侧面积.

解答 证明:(1)∵在四棱锥P-ABCD中,∠BAP=∠CDP=90°,
∴AB⊥PA,CD⊥PD,
又AB∥CD,∴AB⊥PD,
∵PA∩PD=P,∴AB⊥平面PAD,
∵AB?平面PAB,∴平面PAB⊥平面PAD.
解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,
∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,
∴PO⊥底面ABCD,且AD=$\sqrt{{a}^{2}+{a}^{2}}$=$\sqrt{2}a$,PO=$\frac{\sqrt{2}}{2}a$,
∵四棱锥P-ABCD的体积为$\frac{8}{3}$,
∴VP-ABCD=$\frac{1}{3}×{S}_{四边形ABCD}×PO$
=$\frac{1}{3}×AB×AD×PO$=$\frac{1}{3}×a×\sqrt{2}a×\frac{\sqrt{2}}{2}a$=$\frac{1}{3}{a}^{3}$=$\frac{8}{3}$,
解得a=2,∴PA=PD=AB=DC=2,AD=BC=2$\sqrt{2}$,PO=$\sqrt{2}$,
∴PB=PC=$\sqrt{4+4}$=2$\sqrt{2}$,
∴该四棱锥的侧面积:
S=S△PAD+S△PAB+S△PDC+S△PBC
=$\frac{1}{2}×PA×PD$+$\frac{1}{2}×PA×AB$+$\frac{1}{2}×PD×DC$+$\frac{1}{2}×BC×\sqrt{P{B}^{2}-(\frac{BC}{2})^{2}}$
=$\frac{1}{2}×2×2+\frac{1}{2}×2×2+\frac{1}{2}×2×2+\frac{1}{2}×2\sqrt{2}×\sqrt{8-2}$
=6+2$\sqrt{3}$.

点评 本题考查面面垂直的证明,考查四棱锥的侧面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{m}$,$\overrightarrow{n}$为非零向量,则“存在负数λ,使得$\overrightarrow{m}$=λ$\overrightarrow{n}$”是$\overrightarrow{m}$•$\overrightarrow{n}$<0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若集合A={x|y=${x^{\frac{1}{2}}$},B={x|y=ln(x+1)},则A∩B=(  )
A.[0,+∞)B.(0,1)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是4,最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=$\sqrt{2}$,则C=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是(  )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是②③.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若tan(α-$\frac{π}{4}$)=$\frac{1}{6}$.则tanα=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案