精英家教网 > 高中数学 > 题目详情
8.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是②③.(填写所有正确结论的编号)

分析 由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|=$\sqrt{2}$,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.

解答 解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,
不妨设图中所示正方体边长为1,
故|AC|=1,|AB|=$\sqrt{2}$,
斜边AB以直线AC为旋转轴,则A点保持不变,
B点的运动轨迹是以C为圆心,1为半径的圆,
以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,
则D(1,0,0),A(0,0,1),直线a的方向单位向量$\overrightarrow{a}$=(0,1,0),|$\overrightarrow{a}$|=1,
直线b的方向单位向量$\overrightarrow{b}$=(1,0,0),|$\overrightarrow{b}$|=1,
设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),
其中θ为B′C与CD的夹角,θ∈[0,2π),
∴AB′在运动过程中的向量,$\overrightarrow{A{B}^{'}}$=(cosθ,sinθ,-1),|$\overrightarrow{A{B}^{'}}$|=$\sqrt{2}$,
设$\overrightarrow{A{B}^{'}}$与$\overrightarrow{a}$所成夹角为α∈[0,$\frac{π}{2}$],
则cosα=$\frac{|(-cosθ,-sinθ,1)•(0,1,0)|}{|\overrightarrow{a}|•|\overrightarrow{A{B}^{'}}|}$=$\frac{\sqrt{2}}{2}$|sinθ|∈[0,$\frac{\sqrt{2}}{2}$],
∴α∈[$\frac{π}{4}$,$\frac{π}{2}$],∴③正确,④错误.
设$\overrightarrow{A{B}^{'}}$与$\overrightarrow{b}$所成夹角为β∈[0,$\frac{π}{2}$],
cosβ=$\frac{|\overrightarrow{A{B}^{'}}•\overrightarrow{b}|}{|\overrightarrow{A{B}^{'}}|•|\overrightarrow{b}|}$=$\frac{|(-cosθ,sinθ,1)•(1,0,0)|}{|\overrightarrow{b}|•|\overrightarrow{A{B}^{'}}|}$=$\frac{\sqrt{2}}{2}$|cosθ|,
当$\overrightarrow{A{B}^{'}}$与$\overrightarrow{a}$夹角为60°时,即α=$\frac{π}{3}$,
|sinθ|=$\sqrt{2}cosα$=$\sqrt{2}cos\frac{π}{3}$=$\frac{\sqrt{2}}{2}$,
∵cos2θ+sin2θ=1,∴cosβ=$\frac{\sqrt{2}}{2}$|cosθ|=$\frac{1}{2}$,
∵β∈[0,$\frac{π}{2}$],∴β=$\frac{π}{3}$,此时$\overrightarrow{A{B}^{'}}$与$\overrightarrow{b}$的夹角为60°,
∴②正确,①错误.
故答案为:②③.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=3x-($\frac{1}{3}$)x,则f(x)(  )
A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列$\left\{\frac{{b}_{n}}{{a}_{n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为$\frac{8}{3}$,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{5}}{2}$x,且与椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1有公共焦点,则C的方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{10}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-1-alnx.
(1)若 f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<m,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°.
(1)证明:直线BC∥平面PAD;
(2)若△PCD面积为2$\sqrt{7}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.
求证:(1)∠PAC=∠CAB;
(2)AC2 =AP•AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案