18£®ÎªÁËÑо¿Ò»ÖÖÐÂÒ©µÄÁÆÐ§£¬Ñ¡100Ãû»¼ÕßËæ»ú·Ö³ÉÁ½×飬ÿ×é¸÷50Ãû£¬Ò»×é·þÒ©£¬ÁíÒ»×é²»·þÒ©£®Ò»¶Îʱ¼äºó£¬¼Ç¼ÁËÁ½×黼ÕßµÄÉúÀíÖ¸±êxºÍyµÄÊý¾Ý£¬²¢ÖƳÉÈçͼ£¬ÆäÖС°*¡±±íʾ·þÒ©Õߣ¬¡°+¡±±íʾδ·þÒ©Õߣ®
£¨1£©´Ó·þÒ©µÄ50Ãû»¼ÕßÖÐËæ»úÑ¡³öÒ»ÈË£¬Çó´ËÈËÖ¸±êyµÄֵСÓÚ60µÄ¸ÅÂÊ£»
£¨2£©´ÓͼÖÐA£¬B£¬C£¬DËÄÈËÖÐËæ»úÑ¡³öÁ½ÈË£¬¼Ç¦ÎΪѡ³öµÄÁ½ÈËÖÐÖ¸±êxµÄÖµ´óÓÚ1.7µÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨¦Î£©£»
£¨3£©ÊÔÅжÏÕâ100Ãû»¼ÕßÖзþÒ©ÕßÖ¸±êyÊý¾ÝµÄ·½²îÓëδ·þÒ©ÕßÖ¸±êyÊý¾ÝµÄ·½²îµÄ´óС£®£¨Ö»Ðèд³ö½áÂÛ£©

·ÖÎö £¨1£©ÓÉͼÇó³öÔÚ50Ãû·þÒ©»¼ÕßÖУ¬ÓÐ15Ãû»¼ÕßÖ¸±êyµÄֵСÓÚ60£¬ÓÉ´ËÄÜÇó³ö´Ó·þÒ©µÄ50Ãû»¼ÕßÖÐËæ»úÑ¡³öÒ»ÈË£¬´ËÈËÖ¸±êСÓÚ60µÄ¸ÅÂÊ£®
£¨2£©ÓÉͼ֪£ºA¡¢CÁ½ÈËÖ¸±êxµÄÖµ´óÓÚ1.7£¬¶øB¡¢DÁ½ÈËÔòСÓÚ1.7£¬¿ÉÖªÔÚËÄÈËÖÐËæ»úÑ¡Ïî³öµÄ2ÈËÖÐÖ¸±êxµÄÖµ´óÓÚ1.7µÄÈËÊý¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE£¨¦Î£©£®
£¨3£©ÓÉͼ֪100Ãû»¼ÕßÖзþÒ©ÕßÖ¸±êyÊý¾ÝµÄ·½²î±Èδ·þÒ©ÕßÖ¸±êyÊý¾ÝµÄ·½²î´ó£®

½â´ð ½â£º£¨1£©ÓÉͼ֪£ºÔÚ50Ãû·þÒ©»¼ÕßÖУ¬ÓÐ15Ãû»¼ÕßÖ¸±êyµÄֵСÓÚ60£¬
Ôò´Ó·þÒ©µÄ50Ãû»¼ÕßÖÐËæ»úÑ¡³öÒ»ÈË£¬´ËÈËÖ¸±êСÓÚ60µÄ¸ÅÂÊΪ£º
p=$\frac{15}{50}$=$\frac{3}{10}$£®
£¨2£©ÓÉͼ֪£ºA¡¢CÁ½ÈËÖ¸±êxµÄÖµ´óÓÚ1.7£¬¶øB¡¢DÁ½ÈËÔòСÓÚ1.7£¬
¿ÉÖªÔÚËÄÈËÖÐËæ»úÑ¡Ïî³öµÄ2ÈËÖÐÖ¸±êxµÄÖµ´óÓÚ1.7µÄÈËÊý¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬
P£¨¦Î=0£©=$\frac{1}{{C}_{4}^{2}}=\frac{1}{6}$£¬
P£¨¦Î=1£©=$\frac{{C}_{2}^{1}{C}_{2}^{1}}{{C}_{4}^{2}}$=$\frac{2}{3}$£¬
P£¨¦Î=2£©=$\frac{1}{{C}_{4}^{2}}$=$\frac{1}{6}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐÈçÏ£º

 ¦Î 0 1 2
 P $\frac{1}{6}$ $\frac{2}{3}$ $\frac{1}{6}$
E£¨¦Î£©=$0¡Á\frac{1}{6}+1¡Á\frac{2}{3}+2¡Á\frac{1}{6}$=1£®
£¨3£©ÓÉͼ֪100Ãû»¼ÕßÖзþÒ©ÕßÖ¸±êyÊý¾ÝµÄ·½²î±Èδ·þÒ©ÕßÖ¸±êyÊý¾ÝµÄ·½²î´ó£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍû¡¢·½²îµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢¿Õ¼äÏëÏóÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®a£¬bΪ¿Õ¼äÖÐÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïߣ¬µÈÑüÖ±½ÇÈý½ÇÐÎABCµÄÖ±½Ç±ßACËùÔÚÖ±ÏßÓëa£¬b¶¼´¹Ö±£¬Ð±±ßABÒÔÖ±ÏßACΪÐýתÖáÐýת£¬ÓÐÏÂÁнáÂÛ£º
¢Ùµ±Ö±ÏßABÓëa³É60¡ã½Çʱ£¬ABÓëb³É30¡ã½Ç£»
¢Úµ±Ö±ÏßABÓëa³É60¡ã½Çʱ£¬ABÓëb³É60¡ã½Ç£»
¢ÛÖ±ÏßABÓëaËù³É½ÇµÄ×îСֵΪ45¡ã£»
¢ÜÖ±ÏßABÓëaËù³É½ÇµÄ×îСֵΪ60¡ã£»
ÆäÖÐÕýÈ·µÄÊÇ¢Ú¢Û£®£¨ÌîдËùÓÐÕýÈ·½áÂ۵ıàºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª¡÷ABCµÄÃæ»ýΪ$\frac{a^2}{3sinA}$£®
£¨1£©ÇósinBsinC£»
£¨2£©Èô6cosBcosC=1£¬a=3£¬Çó¡÷ABCµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÔ²ÖùµÄ¸ßΪ1£¬ËüµÄÁ½¸öµ×ÃæµÄÔ²ÖÜÔÚÖ±¾¶Îª2µÄͬһ¸öÇòµÄÇòÃæÉÏ£¬Ôò¸ÃÔ²ÖùµÄÌå»ýΪ£¨¡¡¡¡£©
A£®¦ÐB£®$\frac{3¦Ð}{4}$C£®$\frac{¦Ð}{2}$D£®$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈôË«ÇúÏßx2-$\frac{{y}^{2}}{m}$=1µÄÀëÐÄÂÊΪ$\sqrt{3}$£¬ÔòʵÊým=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÎÒ¹ú¹Å´úÊýѧÃûÖø¡¶Ë㷨ͳ×Ú¡·ÖÐÓÐÈçÏÂÎÊÌ⣺¡°Ô¶ÍûΡΡËþÆß²ã£¬ºì¹âµãµã±¶¼ÓÔö£¬¹²µÆÈý°Ù°Ëʮһ£¬ÇëÎʼâÍ·¼¸ÕµµÆ£¿¡±Òâ˼ÊÇ£ºÒ»×ù7²ãËþ¹²¹ÒÁË381ÕµµÆ£¬ÇÒÏàÁÚÁ½²ãÖеÄÏÂÒ»²ãµÆÊýÊÇÉÏÒ»²ãµÆÊýµÄ2±¶£¬ÔòËþµÄ¶¥²ã¹²Óеƣ¨¡¡¡¡£©
A£®1ÕµB£®3ÕµC£®5ÕµD£®9Õµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a3=3£¬S4=10£¬Ôò $\sum_{k=1}^{n}$$\frac{1}{{S}_{k}}$=$\frac{2n}{n+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=2xlnx-1£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСֵ£»
£¨2£©Èô²»µÈʽf£¨x£©¡Ü3x2+2axºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y+3¡Ü0}\\{3x+y+5¡Ü0}\\{x+3¡Ý0}\end{array}\right.$£¬Ôòz=x+2yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®0B£®2C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸