分析 (1)根据三角形面积公式和正弦定理可得答案,
(2)根据两角余弦公式可得cosA=$\frac{1}{2}$,即可求出A=$\frac{π}{3}$,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.
解答 解:(1)由三角形的面积公式可得S△ABC=$\frac{1}{2}$acsinB=$\frac{a^2}{3sinA}$,
∴3csinBsinA=2a,
由正弦定理可得3sinCsinBsinA=2sinA,
∵sinA≠0,
∴sinBsinC=$\frac{2}{3}$;
(2)∵6cosBcosC=1,
∴cosBcosC=$\frac{1}{6}$,
∴cosBcosC-sinBsinC=$\frac{1}{6}$-$\frac{2}{3}$=-$\frac{1}{2}$,
∴cos(B+C)=-$\frac{1}{2}$,
∴cosA=$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{3}$,
∵$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R=$\frac{3}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,
∴sinBsinC=$\frac{b}{2R}$•$\frac{c}{2R}$=$\frac{bc}{(2\sqrt{3})^{2}}$=$\frac{bc}{12}$=$\frac{2}{3}$,
∴bc=8,
∵a2=b2+c2-2bccosA,
∴b2+c2-bc=9,
∴(b+c)2=9+3cb=9+24=33,
∴b+c=$\sqrt{33}$
∴周长a+b+c=3+$\sqrt{33}$.
点评 本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A>1000和n=n+1 | B. | A>1000和n=n+2 | C. | A≤1000和n=n+1 | D. | A≤1000和n=n+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com