精英家教网 > 高中数学 > 题目详情
3.在△ABC中,若C=120°,tanA=3tanB,sinA=λsinB,则实数λ=$\frac{1+\sqrt{13}}{2}$.

分析 由余弦定理可得:c2=a2+b2+ab,由正弦定理,同角三角函数基本关系式化简已知等式可得:acosB=3bcosA,由余弦定理可得:c2=2a2-2b2,可得($\frac{a}{b}$)2-$\frac{a}{b}$-3=0,解得$\frac{a}{b}$的值,由正弦定理即可得解.

解答 解:∵C=120°,由余弦定理可得:c2=a2+b2+ab,①
∵tanA=3tanB,可得:sinAcosB=3sinBcosA,由正弦定理可得:acosB=3bcosA,
∴由余弦定理可得:a$•\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=3b$•\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,整理可得:c2=2a2-2b2,②
∴由①②可得:a2-ab-3b2=0,可得:($\frac{a}{b}$)2-$\frac{a}{b}$-3=0,解得:$\frac{a}{b}$=$\frac{1+\sqrt{13}}{2}$,
∴由正弦定理可得:sinA=$\frac{1+\sqrt{13}}{2}$sinB,
故答案为:$\frac{1+\sqrt{13}}{2}$.

点评 本题主要考查了余弦定理,正弦定理,同角三角函数基本关系式在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为$\frac{a^2}{3sinA}$.
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an}的前n项和为Sn,a3=3,S4=10,则 $\sum_{k=1}^{n}$$\frac{1}{{S}_{k}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2xlnx-1.
(1)求函数f(x)的最小值;
(2)若不等式f(x)≤3x2+2ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正方体ABCD-A1B1C1D1的棱长为a,在此几何体中,给出下面四个结论:①异面直线A1D与AB1所成角为60°;②直线A1D与BC1垂直;③直线A1D与BD1平行;④三棱锥A-A1CD的体积为$\frac{1}{6}{a^3}$,其中正确的结论个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位长度,所得函数图象的一条对称轴方程是(  )
A.x=$\frac{2}{3}$πB.x=-$\frac{1}{12}$πC.x=$\frac{1}{3}$πD.x=$\frac{5}{12}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
经计算得 $\overline{x}$=$\frac{1}{16}$$\sum_{i=1}^{16}$xi=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})$≈0.212,$\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}$≈18.439,$\sum_{i=1}^{16}$(xi-$\overline{x}$)(i-8.5)=-2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i=1,2,…,n)的相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+3≤0}\\{3x+y+5≤0}\\{x+3≥0}\end{array}\right.$,则z=x+2y的最大值是(  )
A.0B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

同步练习册答案