精英家教网 > 高中数学 > 题目详情
8.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位长度,所得函数图象的一条对称轴方程是(  )
A.x=$\frac{2}{3}$πB.x=-$\frac{1}{12}$πC.x=$\frac{1}{3}$πD.x=$\frac{5}{12}$π

分析 根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得所得函数图象的一条对称轴方程.

解答 解:将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位长度,可得y=sin(2x+$\frac{π}{2}$-$\frac{π}{3}$)=sin(2x+$\frac{π}{6}$)的图象,
令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,可得所得函数图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
令k=1,可得所得函数图象的一条对称轴方程为x=$\frac{2π}{3}$,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=$\frac{1}{3}$,则sinβ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为(  )
A.90πB.63πC.42πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=$\frac{1}{5}$,且当n>1,n∈N*时,有an-1-an-4an-1•an=0.
(1)求证:数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列,并求出数列{an}的通项公式;
(2)令bn=an•an+1,设数列{bn}的前n项和为Sn,证明:${S_n}<\frac{1}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若C=120°,tanA=3tanB,sinA=λsinB,则实数λ=$\frac{1+\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知矩阵A=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,B=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$.
(1)求AB;
(2)若曲线C1:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}$=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是(  )
A.a=2bB.b=2aC.A=2BD.B=2A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)
70560
60525
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?

查看答案和解析>>

同步练习册答案