精英家教网 > 高中数学 > 题目详情
18.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)
70560
60525
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?

分析 (Ⅰ)直接由题意结合图表列关于x,y所满足得不等式组,化简后即可画出二元一次不等式所表示的平面区域;
(Ⅱ)写出总收视人次z=60x+25y.化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 (Ⅰ)解:由已知,x,y满足的数学关系式为$\left\{\begin{array}{l}70x+60y≤600\\ 5x+5y≥30\\ x≤2y\\ x≥0\\ y≥0\end{array}\right.$,即$\left\{\begin{array}{l}7x+6y≤60\\ x+y≥6\\ x-2y≤0\\ x≥0\\ y≥0\end{array}\right.$.
该二元一次不等式组所表示的平面区域如图:

(Ⅱ)解:设总收视人次为z万,则目标函数为z=60x+25y.
考虑z=60x+25y,将它变形为$y=-\frac{12}{5}x+\frac{z}{25}$,这是斜率为$-\frac{12}{5}$,随z变化的一族平行直线.
$\frac{z}{25}$为直线在y轴上的截距,当$\frac{z}{25}$取得最大值时,z的值最大.
又∵x,y满足约束条件,
∴由图可知,当直线z=60x+25y经过可行域上的点M时,截距$\frac{z}{25}$最大,即z最大.
解方程组$\left\{\begin{array}{l}7x+6y=60\\ x-2y=0\end{array}\right.$,得点M的坐标为(6,3).
∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.

点评 本题考查解得线性规划的应用,考查数学建模思想方法及数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位长度,所得函数图象的一条对称轴方程是(  )
A.x=$\frac{2}{3}$πB.x=-$\frac{1}{12}$πC.x=$\frac{1}{3}$πD.x=$\frac{5}{12}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=(  )
A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|-1≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n-1}的前n项和(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{5}$,|$\overrightarrow{c}$|=1,若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是(  )
A.[1,2]B.[2,4]C.[$\sqrt{7}$-1,$\sqrt{7}$+1]D.[$\sqrt{5}$-1,$\sqrt{5}$+1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\sqrt{3}$sinx+cosx,0≤x<$\frac{π}{2}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}$+1D.$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《数学选修1-2》的知识结构图如图所示,则“直接证明与间接证明”的“上位”要素是(  )
A.推理与证明B.统计案例
C.数系的扩充与复数的引入D.框图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,$AB=BC=\sqrt{5},AC=2$且点A1在底面ABC上的射影O恰是线段AC的中点,$A{A_1}=\sqrt{5}$.
(1)判断A1B与B1C是否垂直,并证明你的结论;
(2)求点A1到平面BCC1B1的距离.

查看答案和解析>>

同步练习册答案