精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足a1=$\frac{1}{5}$,且当n>1,n∈N*时,有an-1-an-4an-1•an=0.
(1)求证:数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列,并求出数列{an}的通项公式;
(2)令bn=an•an+1,设数列{bn}的前n项和为Sn,证明:${S_n}<\frac{1}{20}$.

分析 (1)通过将an-1-an=4an-1•an两边同时除以an-1•an、进而可知数列$\left\{{\frac{1}{a_n}}\right\}$是首项为5、公差为4的等差数列,利用等差数列的通项公式计算可得结论;
(2)通过(1)裂项可知bn=$\frac{1}{4}$($\frac{1}{4n+1}$-$\frac{1}{4n+5}$),进而并项相加放缩可得结论.

解答 证明:(1)因为an-1-an-4an-1•an=0,
所以an-1-an=4an-1•an
两边同时除以an-1•an得:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=4,
又因为$\frac{1}{{a}_{1}}$=5,
所以数列$\left\{{\frac{1}{a_n}}\right\}$是首项为5、公差为4的等差数列,
所以$\frac{1}{{a}_{n}}$=5+4(n-1)=4n+1,
所以an=$\frac{1}{4n+1}$;
(2)由(1)可知bn=an•an+1=$\frac{1}{4n+1}$•$\frac{1}{4n+5}$=$\frac{1}{4}$($\frac{1}{4n+1}$-$\frac{1}{4n+5}$),
所以Sn=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{9}$+$\frac{1}{9}$-$\frac{1}{13}$+…+$\frac{1}{4n+1}$-$\frac{1}{4n+5}$)=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{4n+5}$)<$\frac{1}{20}$,
即${S_n}<\frac{1}{20}$.

点评 本题是一道关于数列与不等式的综合题,考查数列的通项及前n项和,考查裂项相消法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是(  )
A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )
A.1盏B.3盏C.5盏D.9盏

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证双曲线$y=\frac{1}{x}$上任意一点P处的切线与与两坐标轴围成的三角形面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2xlnx-1.
(1)求函数f(x)的最小值;
(2)若不等式f(x)≤3x2+2ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正方体ABCD-A1B1C1D1中,给出下列结论:
(1)AC⊥B1D1           
(2)AC1⊥BC1
(3)AB1与BC1成角为60°
  (4)AB与A1C成角为45°
所有正确结论的序号(1)、(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位长度,所得函数图象的一条对称轴方程是(  )
A.x=$\frac{2}{3}$πB.x=-$\frac{1}{12}$πC.x=$\frac{1}{3}$πD.x=$\frac{5}{12}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=(1-x2)ex
(1)讨论f(x)的单调性;
(2)当x≥0时,f(x)≤ax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n-1}的前n项和(n∈N+).

查看答案和解析>>

同步练习册答案