精英家教网 > 高中数学 > 题目详情
4.求证双曲线$y=\frac{1}{x}$上任意一点P处的切线与与两坐标轴围成的三角形面积为定值.

分析 求得切线方程,分别令x=0,求得B点坐标,当y=0时,求得A点坐标,根据三角形的面积公式,即可求得与两坐标轴围成的三角形面积为定值.

解答 解:证明:设曲线$y=\frac{1}{x}$上任意一点为P(x0,$\frac{1}{{x}_{0}}$),∵y′=-$\frac{1}{{x}^{2}}$,
∴在点P处切线的斜率k=-$\frac{1}{{x}_{0}^{2}}$,
∴在P点处的切线方程为y-$\frac{1}{{x}_{0}}$=-$\frac{1}{{x}_{0}^{2}}$(x-x0).
令x=0,得y=$\frac{1}{{x}_{0}}$+$\frac{1}{{x}_{0}}$=$\frac{2}{{x}_{0}}$,则B(0,$\frac{2}{{x}_{0}}$)
令y=0,得x=x0+x02×$\frac{1}{{x}_{0}}$=2x0,C(2x0,0),
∴S=$\frac{1}{2}$|x|•|y|=2.
故三角形面积为定值2.
过P处的切线与与两坐标轴围成的三角形面积为定值2.

点评 本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈D}\\{x,x∉D}\end{array}\right.$,其中集合D={x|x=$\frac{n-1}{n}$,n∈N*},则方程f(x)-lgx=0的解的个数是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+ax2+(2a+1)x.
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤-$\frac{3}{4a}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=1.96.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为(  )
A.90πB.63πC.42πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆x2+my2=1的焦距为$\sqrt{3}$,则m=4或$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=$\frac{1}{5}$,且当n>1,n∈N*时,有an-1-an-4an-1•an=0.
(1)求证:数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列,并求出数列{an}的通项公式;
(2)令bn=an•an+1,设数列{bn}的前n项和为Sn,证明:${S_n}<\frac{1}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

同步练习册答案