分析 (1)通过首项和公比,联立a1+a2=6、a1a2=a3,可求出a1=q=2,进而利用等比数列的通项公式可得结论;
(2)利用等差数列的性质可知S2n+1=(2n+1)bn+1,结合S2n+1=bnbn+1可知bn=2n+1,进而可知$\frac{{b}_{n}}{{a}_{n}}$=$\frac{2n+1}{{2}^{n}}$,利用错位相减法计算即得结论.
解答 解:(1)记正项等比数列{an}的公比为q,
因为a1+a2=6,a1a2=a3,
所以(1+q)a1=6,q${{a}_{1}}^{2}$=q2a1,
解得:a1=q=2,
所以an=2n;
(2)因为{bn} 为各项非零的等差数列,
所以S2n+1=(2n+1)bn+1,
又因为S2n+1=bnbn+1,
所以bn=2n+1,$\frac{{b}_{n}}{{a}_{n}}$=$\frac{2n+1}{{2}^{n}}$,
所以Tn=3•$\frac{1}{2}$+5•$\frac{1}{{2}^{2}}$+…+(2n+1)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=3•$\frac{1}{{2}^{2}}$+5•$\frac{1}{{2}^{3}}$+…+(2n-1)•$\frac{1}{{2}^{n}}$+(2n+1)•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Tn=3•$\frac{1}{2}$+2($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(2n+1)•$\frac{1}{{2}^{n+1}}$,
即$\frac{1}{2}$Tn=3•$\frac{1}{2}$+($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$)-(2n+1)•$\frac{1}{{2}^{n+1}}$,
即Tn=3+1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-2}}$)-(2n+1)•$\frac{1}{{2}^{n}}$=3+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-(2n+1)•$\frac{1}{{2}^{n}}$
=5-$\frac{2n+5}{{2}^{n}}$.
点评 本题考查数列的通项及前n项和,考查等差数列的性质,考查错位相减法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (0,1) | C. | (-1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com