精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是4,最大值是$2\sqrt{5}$.

分析 通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5+4cosα}$、|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5-4cosα}$,进而换元,转化为线性规划问题,计算即得结论.

解答 解:记∠AOB=α,则0≤α≤π,如图,
由余弦定理可得:
|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5+4cosα}$,
|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5-4cosα}$,
令x=$\sqrt{5-4cosα}$,y=$\sqrt{5+4cosα}$,
则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,
令z=x+y,则y=-x+z,
则直线y=-x+z过M、N时z最小为zmin=1+3=3+1=4,
当直线y=-x+z与圆弧MN相切时z最大,
由平面几何知识易知zmax即为原点到切线的距离的$\sqrt{2}$倍,
也就是圆弧MN所在圆的半径的$\sqrt{2}$倍,
所以zmax=$\sqrt{2}$×$\sqrt{10}$=$2\sqrt{5}$.
综上所述,|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是4,最大值是$2\sqrt{5}$.
故答案为:4、$2\sqrt{5}$.

点评 本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(ωx-φ),$(ω>0,0<φ<\frac{π}{2})$的图象经过点$({\frac{π}{4},\frac{{\sqrt{3}}}{2}})$,且相邻两条对称轴的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的解析式及其在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是A,B,C的对边,若$f({\frac{A}{2}})+cosA=\frac{1}{2}$,求∠A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=$\frac{i}{2-i}$(i是虚数单位)在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列$\left\{\frac{{b}_{n}}{{a}_{n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F是双曲线C:x2-$\frac{{y}^{2}}{3}$=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为$\frac{8}{3}$,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-1-alnx.
(1)若 f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<m,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=$\frac{1}{3}$,则sinβ=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案