精英家教网 > 高中数学 > 题目详情
9.已知F是双曲线C:x2-$\frac{{y}^{2}}{3}$=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

分析 由题意求得双曲线的右焦点F(2,0),由PF与x轴垂直,代入即可求得P点坐标,根据三角形的面积公式,即可求得△APF的面积.

解答 解:由双曲线C:x2-$\frac{{y}^{2}}{3}$=1的右焦点F(2,0),
PF与x轴垂直,设(2,y),y>0,则y=3,
则P(2,3),
∴AP⊥PF,则丨AP丨=1,丨PF丨=3,
∴△APF的面积S=$\frac{1}{2}$×丨AP丨×丨PF丨=$\frac{3}{2}$,
同理当y<0时,则△APF的面积S=$\frac{3}{2}$,
故选D.

点评 本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设x、y、z为正数,且2x=3y=5z,则(  )
A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数$\frac{2i}{1+i}(i$为虚数单位)实部与虚部的和为(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$若f(a)=f(a+1),则f($\frac{1}{a}$)=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是4,最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是(  )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=2cosx+sinx的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

同步练习册答案