精英家教网 > 高中数学 > 题目详情
17.我们把焦点相同且离心率互为倒数的椭圆和双曲线称为一对“合一曲线”,已知F1,F2是一对“合一曲线”的焦点,P是他们在第一象限的交点,当|PF1|=10,|PF2|=8时,这一对“合一曲线”中椭圆的离心率为$\frac{1}{3}$.

分析 由椭圆及双曲线的定义求得椭圆与双曲线的长半轴和实半轴长,由离心率互为倒数求得c,则答案可求.

解答 解:由题意可知,椭圆中,2a1=10+8=18,${e}_{1}=\frac{c}{9}$,
双曲线中,2a2=10-8=2,${e}_{2}=\frac{c}{1}$,
∵e1•e2=1,∴$\frac{{c}^{2}}{9}=1$,c=3.
则${e}_{1}=\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查椭圆与双曲线的定义,考查了椭圆与双曲线的几何性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若球的半径为a,球的最大截面面积为4π,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)4的展开式中的常数项为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,a9=$\frac{1}{2}$a12+6,则该数列的前11项和为132.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知xy=1,且O<y<$\frac{1}{2}$,则$\frac{{x}^{2}+16{y}^{2}}{x-4y}$的最小值为(  )
A.2$\sqrt{2}$B.$\frac{17}{3}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点P(x,y)在曲线$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}\right.$(θ为参数,且θ∈[π,2π))上,则点P到直线$\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.(t$为参数)的距离的取值范围是(  )
A.[-$\frac{{3\sqrt{2}}}{2}$,$\frac{{3\sqrt{2}}}{2}$]B.[$\frac{{3\sqrt{2}}}{2}$-1,$\frac{{3\sqrt{2}}}{2}$+1]C.($\sqrt{2}$,2$\sqrt{2}$]D.($\sqrt{2}$,$\frac{{3\sqrt{2}}}{2}$+1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如右图所示,其中支出在[40,50)元的同学有39人,则n的值为(  )
A.100B.120C.130D.390

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从集合{1,2,3}中随机取一个元素,记为a,从集合{2,3,4}中随机取一个元素,记为b,则a≤b的概率为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设有一个4×4网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上,设每次投掷都落在最大的正方形内或与最大的正方形有公共点,则硬币落下后完全在最大的正方形内的概率$\frac{196}{320+π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某驾校甲、乙、丙三名学员在考科目一前的10次模拟考试中通过的次数统计如表:
学员
通过的次数989
假设三名学员子啊正式考试中发挥正常,且各人成绩互不影响,将前10次模拟考试通过的频率作为正式考试通过的概率
(Ⅰ)求甲、乙、丙三名学员在正式考试中均未通过的概率
(Ⅱ)设甲、乙、丙三名学员在正式考试中通过的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案