精英家教网 > 高中数学 > 题目详情

【题目】定义:若对定义域内任意x都有a为正常数),则称函数a增函数.

(1)若(0,),试判断是否为“1距”增函数,并说明理由;

(2)若Ra增函数,求a的取值范围;

(3)若(﹣1,),其中kR,且为“2增函数,求的最小值.

【答案】(1)见解析; (2); (3).

【解析】

(1)利用“1增函数的定义证明即可;(2)由a增函数的定义得到上恒成立,求出a的取值范围即可;(3)由“2增函数可得到恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值

(1)任意,,

因为,, 所以,所以,即是“1距”增函数。

(2).

因为是“距”增函数,所以恒成立,

因为,所以上恒成立,

所以,解得,因为,所以.

(3)因为,且为“2距”增函数,

所以时,恒成立,

时,恒成立,

所以

时,,即恒成立,

所以, 得;

时,

恒成立,

所以,得,

综上所述,得.

因为,所以

时,若取最小值为

时,若取最小值.

因为R上是单调递增函数,

所以当的最小值为;当的最小值为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是0.8,现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出09之间取整数值的随机数,指定01表示没有击中目标,23456789表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该运动员射击4次,至少击中3次的概率为(

7527 0293 7140 9857

0347 4373 8636 6947

1417 4698 0371 6233

2616 8045 6011 3661

9597 7424 7610 4281

A.0.852B.0.8192C.0.8D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点与点.

(1)求椭圆的方程;

(2)设直线过定点,且斜率为,若椭圆上存在两点关于直线对称,为坐标原点,求的取值范围及面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数 的图象如图

给出下列四个命题:

①方程有且仅有个根;②方程有且仅有个根;

③方程有且仅有个根;④方程有且仅有个根;

其中正确命题的序号是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求)时,每小时的油耗(所需要的汽油量)为升,其中为常数,且

(1)若汽车以千米/小时的速度行驶时,每小时的油耗为升,欲使每小时的油耗不超过升,求的取值范围;

(2)求该汽车行驶千米的油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面的中点

(1)求证:平面

(2)求证:平面平面

(3)若与平面所成角为的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扇形AOB中心角为,所在圆半径为,它按如图()()两种方式有内接矩形CDEF

(1)矩形CDEF的顶点CD在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设

(2)M是圆弧AB的中点,矩形CDEF的顶点DE在圆弧AB上,且关于直线OM对称,顶点CF分别在半径OBOA上,设

试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)掷两枚质地均匀的骰子,计算点数和为7的概率;

2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;

3)所得频率与概率相差大吗?为什么会有这种差异?

查看答案和解析>>

同步练习册答案