精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
(3)在(2)的条件下,证明直线轴相交于定点.
(1)(2)(3)见解析
本试题主要是考查了椭圆方程求解以及直线与圆的位置关系的运用,直线与椭圆的位置关系的综合运用。
(1)因为椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.根据椭圆的性质和线圆的位置关系得到a,b的值。
(2)由题意知直线的斜率存在,设直线的方程为,与椭圆方程联立方程组,结合韦达定理得到参数k,然后借助于判别式得到范围。
(3)设点,则,直线的方程为
,得,将代入整理,得.得到两根的关系式,结合韦达定理得到定点。
解:⑴由题意知,所以,即,又因为,所以,故椭圆的方程为.………4分
⑵由题意知直线的斜率存在,设直线的方程为  ①
联立消去得:,……..6分
,……….7分
不合题意,
所以直线的斜率的取值范围是.……….9分
⑶设点,则,直线的方程为
,得,将代入整理,得.     ②…………….12分
由得①代入②整理,得
所以直线轴相交于定点.……….14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的方程为( )
A.B.
C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆经过点(0,1),离心率
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点A关于x轴的对称点为
①试建立 的面积关于m的函数关系;
②某校高二(1)班数学兴趣小组通过试验操作初步推断;“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知圆方程为:.
(Ⅰ)直线过点,且与圆交于两点,若,求直线的方程;
(Ⅱ)过圆上一动点作平行于轴的直线,设轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点和直线分别是椭圆的右焦点和右准线.过点作斜率为的直线,该直线与交于点,与椭圆的一个交点是,且.则椭圆的离心率        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的离心率,过两点的直线到原点的距离是
(1)求椭圆的方程 ; 
(2)已知直线交椭圆于不同的两点,且都在以为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,过右焦点F且斜率为的直线与相交于A、B两点,若,则=
A、1                B、         C、          D、2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的标准方程为,则椭圆的离心率为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左、右焦点分别为是双曲线上一点,的中点
轴上,线段的长为,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案