精英家教网 > 高中数学 > 题目详情
双曲线的左、右焦点分别为是双曲线上一点,的中点
轴上,线段的长为,则该双曲线的离心率为
A.B.C.D.
D
由题意可知轴,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线轴上的截距为并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围; 
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
(3)在(2)的条件下,证明直线轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一点到焦点的距离为2,的中点,则等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的长轴长是短轴长的两倍,且过点
(1)求椭圆的标准方程;
(2)若直线与椭圆交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)离心率为的椭圆的左、右焦点分别为是坐标原点.
(1)求椭圆的方程;
(2)若直线交于相异两点,且,求.(其中是坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以C:的焦点为顶点,顶点为焦点的椭圆的方程为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点F1、F2,点P在椭圆C上,且P F1⊥F1F2,| P F1|=,| P F2|=
(I)求椭圆C的方程;
(II)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。

查看答案和解析>>

同步练习册答案