精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。
(I)(II){k∣}
本试题主要是考查了椭圆的方程与性质的运用,以及直线与椭圆的位置关系的综合运用。
(1)因为设椭圆方程为
可知得到参数a,b的值。
(2)设直线l的方程为代入椭圆方程整理得
,联立方程组,结合韦达定理和判别式得到参数k的范围。
解:(I)设椭圆方程为
解得  a=3,所以b=1,故所求方程为   ……………………6分
(II)设直线l的方程为代入椭圆方程整理得
 ………………………… 7分
由题意得 …………………………9分
解得   又直线l与坐标轴不平行 ……………………11分
故直线l斜率的取值范围是{k∣}   …………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足

(Ⅰ)设为点P的横坐标,证明
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1M的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆)经过点,其离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ) 直线交椭圆于两点,且的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 求满足下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过两点
(2)经过点(2,-3)且与椭圆具有共同的焦点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上的一点,为焦点,,则的面积为(  )
A.   B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线的交点
为钝角.

(1)求曲线的方程;
(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知圆方程为:.
(Ⅰ)直线过点,且与圆交于两点,若,求直线的方程;
(Ⅱ)过圆上一动点作平行于轴的直线,设轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左、右焦点分别为是双曲线上一点,的中点
轴上,线段的长为,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案