精英家教网 > 高中数学 > 题目详情
(本小题满分14分)设椭圆)经过点,其离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ) 直线交椭圆于两点,且的面积为,求的值.
(Ⅰ)(Ⅱ)

试题分析:(Ⅰ)由已知,得 ,所求椭圆M的方程为
.(6分)
(Ⅱ)由,得,由得,,设 .  

.(9分)
的距离为.(10分)
 ,
所以
显然,故.(14分)
点评:本题计算量较大,对于文科生是拉开差距的题目
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线轴交于点,当为何值时的面积有最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆的两个焦点,点M在椭圆上,若△是直角三角形,则△的面积等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的左、右焦点,弦,则的周长为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆的离心率为,焦点在轴上,且长轴长为10,曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4.
(1)求椭圆的标准方程;
(2)求曲线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一点到焦点的距离为2,的中点,则等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。

(Ⅰ)求椭圆E的标准方程;
 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。

查看答案和解析>>

同步练习册答案