精英家教网 > 高中数学 > 题目详情
如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线的交点
为钝角.

(1)求曲线的方程;
(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.
(1)(2)3
本题考查椭圆、抛物线的标准方程,考查直线与椭圆、抛物线的位置关系,考查韦达定理的运用,考查学生的计算能力,联立方程,正确运用韦达定理是关键
(Ⅰ)设曲线C2所在的抛物线的方程为y2=2px,将A( )
)代入可得p的值,利用椭圆的定义,可得曲线C1所在的椭圆的方程;
(Ⅱ)设B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),过F2与x轴不垂直的直线为x=ty+1,与椭圆方程联立,利用韦达定理可得|y1-y2|,同理可知|y3-y4| 。
解:(本小题满分12分)(Ⅰ)

椭圆方程为,抛物线方程为。    ……………5分


同理,将代入得:
    …………8分
…………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线轴上的截距为并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围; 
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为,P为C的右支上一点,且=,△的面积等于(   )
A.24B.36C.48D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为轴,短轴所在直线为轴,建立平面直角坐标系,如图所示:

(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。
(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,它的一个顶点为,离心率
(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面
积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)以下是有关椭圆的两个问题:
问题1:已知椭圆,定点A(1, 1),F是右焦点,P是椭圆上动点,则有最小值;
问题2:已知椭圆,定点A (2, 1),F是右焦点,
P是椭圆上动点,有最小值;

(Ⅰ)求问题1中的最小值,并求此时P点坐标;
(Ⅱ)试类比问题1,猜想问题2中的值,并谈谈你作此猜想的依据.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆以正方形的两个顶点为焦点且过另外两个顶点,那么此椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案