精英家教网 > 高中数学 > 题目详情
(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.
先设此椭圆标准方程,根据椭圆定义可知|BC|=4a-8及勾股定理求得a,进而根据椭圆定义求得|AF|,进而根据勾股定理求得2c,进而求得b,则椭圆方程可得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线轴上的截距为并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围; 
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的左、右焦点,弦,则的周长为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。

(Ⅰ)求椭圆E的标准方程;
 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的长轴长是短轴长的两倍,且过点
(1)求椭圆的标准方程;
(2)若直线与椭圆交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为,P为C的右支上一点,且=,△的面积等于(   )
A.24B.36C.48D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)离心率为的椭圆的左、右焦点分别为是坐标原点.
(1)求椭圆的方程;
(2)若直线交于相异两点,且,求.(其中是坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>

同步练习册答案