【题目】已知函数
,
.
(1)当
时,求函数
的曲线上点
处的切线方程;
(2)当
时,求
的单调区间;
(3)若
有两个极值点
,
,其中
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()
![]()
A.640B.520C.280D.240
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(
)当
时,求此函数对应的曲线在
处的切线方程.
(
)求函数
的单调区间.
(
)对
,不等式
恒成立,求
的取值范围.
【答案】(
)
;(
)见解析;(
)当
时,
,当
时![]()
【解析】试题分析:(1)利用导数的意义,求得切线方程为
;(2)求导得
,通过
,
,
分类讨论,得到单调区间;(3)分离参数法,得到
,通过求导,得
,
.
试题解析:
(
)当
时,
,
∴
,
,
,∴切线方程
.
(
)![]()
![]()
.
令
,则
或
,
当
时,
在
,
上为增函数.
在
上为减函数,
当
时,
在
上为增函数,
当
时,
在
,
上为单调递增,
在
上单调递减.
(
)当
时,
,
当
时,由
得
,对
恒成立.
设
,则
,
令
得
或
,
|
|
|
|
|
|
|
|
|
| 极小 |
|
,∴
,
.
点睛:本题考查导数在函数综合题型中的应用。含参的函数单调性讨论,考查学生的分类讨论能力,本题中,结合导函数的形式,分类讨论;含参的恒成立问题,一般采取分离参数法,解决恒成立。
【题型】解答题
【结束】
20
【题目】已知集合
,集合
且满足:
,
,
与
恰有一个成立.对于
定义
.
(
)若
,
,
,
,求
的值及
的最大值.
(
)取
,
,
,
中任意删去两个数,即剩下的
个数的和为
,求证:
.
(
)对于满足
的每一个集合
,集合
中是否都存在三个不同的元素
,
,
,使得
恒成立,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)证明函数
为奇函数;
(2)判断函数
的单调性(无需证明),并求函数
的值域;
(3)是否存在实数
,使得
的最大值为
?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1:ax+3y+6=0,l2:2x+(a+1)y+6=0与圆C:x2+y2+2x=b2-1(b>0)的位置关系是“平行相交”,则实数b的取值范围为 ( )
A. (
,
) B. (0,
)
C. (0,
) D. (
,
)∪(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某地区乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
时间代号 | 1 | 2 | 3 | 4 | 5 | 6 |
储蓄存款 | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求关于
的回归方程
,并预测该地区2019年的人民币储蓄存款(用最简分数作答).
(2)在含有一个解释变量的线性模型中,
恰好等于相关系数
的平方,当
时,认为线性回归模型是有效的,请计算
并且评价模型的拟合效果(计算结果精确到
).
附:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,内角
、
、
所对的边分别是
、
、
,不等式
对一切实数
恒成立.
(1)求
的取值范围;
(2)当
取最大值,且
的周长为
时,求
面积的最大值,并指出面积取最大值时
的形状.(参考知识:已知
、
,
;
、
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评.同时也为公司赢得丰厚的利润,该公司2013年至2019年的年利润
关于年份代号
的统计数据如下表(已知该公司的年利润与年份代号线性相关)
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年利润 | 29 | 33 | 36 | 44 | 48 | 52 | 59 |
(1)求
关于
的线性回归方程,并预测该公司2020年的年利润;
(2)当统计表中某年年利润的实际值大于由(1)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年.现从2015年至2019年这5年中随机抽取2年,求恰有1年为A级利润年的概率.
参考公式:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,定直线
,动点
到点
的距离比点
到
的距离小1.
(1)求动点P的轨迹C的方程;
(2)过点
的直线
与(1)中轨迹C相交于两个不同的点M、N,若
,求直线
的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com