精英家教网 > 高中数学 > 题目详情

【题目】某市举行中学生诗词大赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30150]内,其频率分布直方图如图.则获得复赛资格的人数为()

A.640B.520C.280D.240

【答案】B

【解析】

由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.

初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,

所有学生的成绩均在区间(30150]内,

由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×200.65

∴获得复赛资格的人数为:0.65×800520

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若对任意实数都有函数的图象与直线相切,则称函数为“恒切函数”,设函数,其中.

(1)讨论函数的单调性;

(2)已知函数为“恒切函数”,

①求实数的取值范围;

②当取最大值时,若函数也为“恒切函数”,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x2kx-8.

(1)若函数yf(x)在区间[2,10]上单调,求实数k的取值范围;

(2)若yf(x)在区间(-∞,2]上有最小值-12求实数k的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数f(x)=sin(2x+ )的图象向右平移个单位长度,可以使f(x)成为奇函数,则的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着旅游观念的转变和旅游业的发展,国民在旅游休闲方面的投入不断增多,民众对旅游的需求也不断提高,安庆某社区居委会统计了2011至2015年每年春节期间外出旅游的家庭数,具体统计资料如表:

年份(x)

2011

2012

2013

2014

2015

家庭数(y)

6

10

16

22

26


(1)从这5年中随机抽取两年,求外出旅游的家庭至少有1年多于20个的概率;
(2)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程 ,并判断它们之间是正相关还是负相关;
(3)利用(2)中所求出的回归直线方程估计该社区2016年在春节期间外出旅游的家庭数.
参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441=440,则=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程 (α为参数)
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标 ,判断点P与直线l的位置关系;
(2)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn= ,n∈N* , 其中c为实数.
(1)若c=0,且b1 , b2 , b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面为直角梯形,.

(1)求证:平面平面

(2)若直线与平面所成角为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案