精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三棱柱ABC-A1B1C1中,有AB=AA1,则AC1与平面BB1C1C所成的角的正弦值为
 
分析:根据题,过取BC的中点E,连接C1E,AE,证明AE⊥面BB1C1C,故∴∠AC1E就是AC1与平面BB1C1C所成的角,解直角三角形AC1E即可.
解答:解:取BC的中点E,连接C1E,AE
则AE⊥BC,
正三棱柱ABC-A1B1C1中,
∴面ABC⊥面BB1C1C,
面ABC∩面BB1C1C=BC,
∴AE⊥面BB1C1C,
∴∠AC1E就是AC1与平面BB1C1C所成的角,
在Rt△AC1E中,∵AB=AA1
sin∠AC1E=
AE
AC1
=
3
2
2
=
6
4

故答案为:
6
4
点评:考查直线和平面所成的角,求直线和平面所成的角关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案