精英家教网 > 高中数学 > 题目详情
(2013•湛江二模)已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然对数的底)
(1)求f(x)的单调区间;
(2)若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求实数a的取值范围.
分析:(1)确定函数的定义域,求导函数,再分类讨论,利用导数的正负,可得f(x)的单调区间;
(2)由题意,存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,等价于对任意x1∈[e,e2]及x2∈[-2,0],f(x)min<g(x)min,确定函数的单调性,求出最值,即可求得实数a的取值范围.
解答:解:(1)由题意可得f(x)的定义域为(0,+∞),f′(x)=
(x-1)[x-(a-1)]
x2

∵a<2,∴a-1<1
①当a-1≤0,即a≤1,∴x∈(0,1)时,f′(x)<0,f(x)是减函数,x∈(1,+∞)时,f′(x)>0,f(x)是增函数;
②当0<a-1<1,即1<a<2,∴x∈(0,a-1)∪(1,+∞)时,f′(x)>0,f(x)是增函数,x∈(a-1,1)时,f′(x)<0,f(x)是减函数;
综上所述,当a≤1时,f(x)的单调减区间是(0,1),单调增区间是(1,+∞);当1<a<2时,f(x)的单调减区间是(a-1,1),单调增区间是(0,a-1),(1,+∞);
(2)由题意,存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,等价于对任意x1∈[e,e2]及x2∈[-2,0],f(x)min<g(x)min
由(1),当a<2,x1∈[e,e2]时,f(x)是增函数,f(x)min=f(e)=e-a-
a-1
e

∵g′(x)=x(1-ex),对任意的x2∈[-2,0],g′(x)≤0,
∴g(x)是减函数,∴g(x)min=g(0)=1,
e-a-
a-1
e
<1

a>
e2-e+1
e+1

∵a<2,
e2-e+1
e+1
<a<2
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江二模)如图,已知平面上直线l1∥l2,A、B分别是l1、l2上的动点,C是l1,l2之间一定点,C到l1的距离CM=1,C到l2的距离CN=
3
,△ABC内角A、B、C所对 边分别为a、b、c,a>b,且bcosB=acosA
(1)判断三角形△ABC的形状;
(2)记∠ACM=θ,f(θ)=
1
AC
+
1
BC
,求f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)(坐标系与参数方程选做题)
在直角坐标系xoy中,曲线C的参数方程是
x=2+2cosθ
y=2sinθ
(θ∈[0,2π],θ为参数),若以O为极点,x轴正半轴为极轴,则曲线C的极坐标方程是
ρ=4cosθ
ρ=4cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)已知f(x)=
2x,x≤0
log3x,x>0
,则f(f(
1
3
))
=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)运行如图的程序框图,输出的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)已知函数f(x)=2
3
sinxcosx+cos2x

(1)求f(
π
6
)
的值;
(2)设x∈[0,
π
4
]
,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案