精英家教网 > 高中数学 > 题目详情

(本题满分10分)选修4-1:几何证明选讲
如图所示,已知与⊙相切,为切点,为割线,弦相交于点,上一点,且
(1)  求证:
(2)  (2)求证:·=·

证明:见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.

(Ⅰ)求证:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分10分)
如下图,ABCD是圆的两条平行弦,BE//ACBECDE、交圆于F,过A点的切线交DC的延长线于PPC=ED=1,PA=2.

(I)求AC的长;
(II)求证:BEEF

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4-1:几何证明选讲
如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点。

求证:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-1几何证明选讲
如图,AB是O的直径,BE为圆0的切线,点c为o 上不同于A、B的一点,AD为的平分线,且分别与BC 交于H,与O交于D,与BE交于E,连结BD、CD.

(I )求证:BD平分
(II)求证:AH•BH=AE•HC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED。

(1)证明:CD//AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.

求证:(1)C,D,F,E四点共圆;
(2)GH2=GE·GF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是⊙的直径,是⊙上的点,的角平分线,过点点作,交的延长线于点,,垂足为点

⑴求证:是⊙的切线    
⑵求证:

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

直线的参数方程为 (t为参数),则直线的倾斜角为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案