精英家教网 > 高中数学 > 题目详情
求函数y=
1
x
与x=1,x=2以及x轴所围成的图形的面积.
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:直接利用积分基本定理即可求解图形的面积
解答: 解:由题意,所求面积为S=
2
1
1
x
dx
=lnx
|
2
1
=ln2.
点评:本题利用定积分计算公式,求封闭曲边图形的面积,着重考查了利用积分公式求原函数和定积分的几何意义等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,若(2-i)•z=-i,则z=(  )
A、-
2
5
+
1
5
i
B、
1
5
-
2
5
i
C、-
2
5
-
1
5
i
D、
1
5
+
2
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,S14=7a10,a7=2,则a9=(  )
A、-4B、4C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),x∈R“y=f(x)为奇函数”是“函数y=|f(x)|的图象关于y轴对称”是的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边与单位圆交于点P(m,n),且n=2m(m≠0)那么sin2α的值是(  )
A、-
4
5
B、
4
5
C、-
3
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)上一个纵坐标为2的点到焦点F的距离为3. 
(Ⅰ)求抛物线C的方程;
(Ⅱ)设点P(0,2),过P作直线l1,l2分别交抛物线于点A,B和点M,N,直线l1,l2的斜率分别为k1和k2,且k1k2=-
3
4
.写出线段AB的长|AB|关于k1的函数表达式,并求四边形AMBN面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(2ωx+
π
6
)+
a
6
+b
,(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是
7
4
,最小值是 
3
4

(1)求ω,a,b的值;
(2)求出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+bx(a,b∈R),g(x)=
1
2
x2-(m+
1
m
)x(m>0),且y=f(x)在点(1,f(1))处的切线方程为x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求m的取值范围;
(Ⅲ)设M(x,y)(x>m+
1
m
)为两曲线y=f(x)+c(c∈R),y=g(x)的交点,且两曲线在交点M处的切线分别为l1,l2.若取m=1,试判断当直线l1,l2与x轴围成等腰三角形时c值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x+
1
2

(1)求f(x)的最小正周期和最大值及相应x的值;
(2)当x∈(0,π),求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案