精英家教网 > 高中数学 > 题目详情
已知过点A(a,4)和B(-2,a)的直线与直线2x+y-1=0垂直,则a的值为(  )
A、0B、-8C、2D、10
考点:直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:由两点式求出直线AB的斜率,然后由直线垂直斜率的关系列式求得a的值.
解答: 解:∵A(a,4),B(-2,a),
kAB=
4-a
a+2

又直线2x+y-1=0的斜率为-2,
-2•
4-a
a+2
=-1

解得:a=2.
故选:C.
点评:本题考查了直线的一般方程和直线垂直的关系,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(2x-1)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则
a0
a1+2a2+3a3+…+2014a2014
=(  )
A、
1
2014
B、-
1
2014
C、
1
4028
D、-
1
4028

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件:
x≥1
y≥
1
2
x
2x+y≤10
的可行域为M
(1)求A=y-2x的最大值与B=x2+y2的最小值;
(2)若存在正实数a,使函数y=2asin(
x
2
+
π
4
)cos(
x
2
+
π
4
)的图象经过区域M中的点,求这时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边分别为a、b、c,△ABC的外接圆半径且满足
cosC
cosB
=
2a-c
b

(1)求角B的大小;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件写出直线的方程,并且化成一般式.
(1)经过点P(-
3
,2)且倾斜角α=120°;
(2)经过点A(-1,0)和B(2,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列等式成立的是(  )
A、lg2•lg3=lg6
B、lg2+lg3=lg5
C、
lg2
lg3
=lg
2
3
D、lg2+lg3=lg6

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(1)sin
π
16
cos
π
16
cos
π
8
cos
π
4
;      
(2)sin50°(1+
3
tan10°)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果幂函数的图象经过点(4,2),则该幂函数的解析式为
 
;定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数图象如图所示,若△ABC是以角C为钝角的钝角三角形,则一定成立的是(  )
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)<f(cosB)

查看答案和解析>>

同步练习册答案