精英家教网 > 高中数学 > 题目详情

ABC是一半径为R的球面上的三个不同点,且任意两点的球面距离均为,若O是球心,则三棱锥O-ABC的体积是

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知L为过点P(-
3
3
2
,-
3
2
)
且倾斜角为30°的直线,圆C为圆心是坐标原点且半径等于1的圆,Q表示顶点在原点而焦点是(
2
8
,0)
的抛物线,设A为L和C在第三象限的交点,B为C和Q在第四象限的交点.
(1)写出直线L、圆C和抛物线Q的方程,并作草图.
(2)写出线段PA、圆弧AB和抛物线上OB一段的函数表达式.
(3)设P′、B′依次为从P、B到x轴的垂足,求由圆弧AB和直线段BB′、B′P′、P′P、PA所包含的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,
2
)
为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y=x对称.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线y=mx+1与双曲线C的左支交于A,B两点,另一直线l经过M(-2,0)及AB的中点,求直线l在y轴上的截距b的取值范围;
(Ⅲ)若Q是双曲线C上的任一点,F1F2为双曲线C的左,右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:只能从下列A、B、C三题中选做一题,如果多做,则按第一题评阅记分)
A.(坐标系与参数方程选做题)曲线
x=cosα
y=1+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
2
2

B.(不等式选讲选做题)设函数f(x)=
|x+1|+|x-2|-a
,若函数f(x)的定义域为R,则实数a的取值范围是
(-∞,3]
(-∞,3]

C.(几何证明选讲选做题)如图,从圆O外一点A引圆的切线AD和割线ABC,已知AC=6,圆O的半径为3,圆心O到AC的距离为
5
,则AD=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C是一半径为R的球面上的三个不同点,且任意两点的球面距离均为,若O是球心,则三棱锥O—ABC的体积是(    )

A.                B.             C.                D.

查看答案和解析>>

同步练习册答案