精英家教网 > 高中数学 > 题目详情
已知以向量
v
=(1,
1
2
)
为方向向量的直线l过点(0,
5
4
)
,抛物线C:y2=2px(p>0)的顶点关于直线l的对称点在该抛物线的准线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若
OA
OB
+p2=0
(O为原点,A、B异于原点),试求点N的轨迹方程.
分析:(Ⅰ)先求直线l:y=
1
2
x+
5
4
,再根据抛物线的顶点关于直线l的对称点在该抛物线的准线上,可得方程,从而可求抛物线C的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),N(x,y),根据
OA
OB
+p2=0
,用坐标表示,结合抛物线方程,即可求得点N的轨迹方程.
解答:解:(Ⅰ)由题意可得直线l:y=
1
2
x+
5
4
     ①
过原点垂直于l的直线方程为 y=-2x    ②
解①②得x=-
1
2
,即两直线的交点的横坐标为x=-
1
2

∵抛物线的顶点关于直线l的对称点在该抛物线的准线上.
-
p
2
=-
1
2
×2
,p=2
∴抛物线C的方程为y2=4x.
(Ⅱ)设A(x1,y1),B(x2,y2),N(x,y),
OA
OB
+p2=0
,得x1x2+y1y2+4=0.
y12=4x1y22=4x2
代入上式
y
2
1
y
2
2
16
+y1y2+4=0.
解得y1y2=-8     
又直线ON:y=
y2
x2
x
,即y=
4
y2
x
      
∵y=y1,∴y1y2=4x
∵y1y2=-8 
∴x=-2(y≠0).
∴点N的轨迹方程为x=-2(y≠0).
点评:本题重点考查轨迹方程,考查抛物线的方程,考查向量知识,解题的关键是将向量关系转化为坐标之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

. (江苏省启东中学高三综合测试四) 已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C(p>0)的顶点关于直线l的对称点在该抛物线上.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设AB是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,AB异于原点),试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省高三上学期期末考试数学理卷 题型:解答题

(本小题满分12分)

已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C(p>0)的顶点关于直线l的对称点在该抛物的准线上.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设AB是抛物线C上两个动点,过A作平行于x轴的直线m交直线OB于点N,若

 (O为原点,AB异于原点),试求点N的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以向量v=(1,)为方向向量的直线l过点(0,),抛物线C:y2=2px(p>0)的顶点关于直线l的对称点在该抛物线的准线上.

(1)求抛物线C的方程;

(2)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若+p2=0(O为原点,A、B异于原点),试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C(p>0)的顶点关于直线l的对称点在该抛物的准线上.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设AB是抛物线C上两个动点,过A作平行于x轴的直线m交直线OB于点N,若

 (O为原点,AB异于原点),试求点N的轨迹方程.

查看答案和解析>>

同步练习册答案