精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
4x
x2+a

在探究a=1时,函数f(x)在区间[0,+∞)上的最大值问题.为此,我们列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x)在[0,+∞)(a=1)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)写出函数f(x)(a=1)的定义域,并求f(x)值域.
分析:(1)结合题中所给的表格可得函数f(x)在[0,+∞)(a=1)上的单调增区间和单调减区间.再利用函数的单调性的定义证明函数f(x)在[1,+∞)
上单调递减.
(2)由于a=1时,函数f(x)=
4x
x2+1
的定义域为R,当x>0时,利用基本不等式求得f(x) 的值域,当x<0时,根据-f(x)=
4
(-x)+(
1
-x
)
,利用
基本不等式求得函数f(x)的值域,再结合f(0)=0,综合可得函数f(x)的值域.
解答:解:(1)结合题中所给的表格可得函数f(x)在[0,+∞)(a=1)上的单调增区为[0,1],单调减区间为[1,+∞).
下面证明当a=1时,函数f(x)=
4x
x2+1
的单调减区间为[1,+∞).
设x2>x1≥1,则 f(x2)-f(x1)=
4x2
x22+1
-
4x1
x12+1
=
4x2(x12+1)-4x1(x22+1)
(x22+1)(x12+1)
=
4(x2-x1)(1-x1•x2)
(x22+1)(x12+1)

由题设可得,x2-x1>0,1-x1•x2<0,(x2+1)2>0,(x1+1)2>0,
∴f(x2)-f(x1)<0,即 f(x2)<f(x1),故函数f(x)在[1,+∞)上单调递减,
即函数f(x)单调减区间为[1,+∞).
(2)由于a=1时,函数f(x)=
4x
x2+1
的定义域为R,当x>0时,f(x)=
4x
x2+1
=
4
x+
1
x
4
2
=2,
当且仅当x=1时,取得等号,故此时函数的值域为(0,2].
当x<0时,∵-f(x)=
4
(-x)+(
1
-x
)
4
2
=2,∴f(x)≥-2,
当且仅当x=-1时,取得等号,故此时函数的值域为[-2,0),
显然,当x=0时,函数f(x)=0.
综上可得,函数f(x)的值域为[-2,2].
点评:本题主要考查函数的单调性的判断和证明,利用基本不等式求函数的值域,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
4-x2
在区间M上的反函数是其本身,则M可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则P点的坐标是
(1,5)
(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x
的定义域为A,B={x|2x+3≥1}.
(1)求A∩B;
(2)设全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),数列{an}满足an=f(n)(n∈N*),且{an}是单调递增数列,则实数a的取值范围(  )

查看答案和解析>>

同步练习册答案