精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2xlnx-x2+2ax,其中a>0.
(1)设g(x)是f(x)的导函数,求函数g(x)的极值;
(2)是否存在常数a,使得x∈[1,+∞)时,f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,说明理由.

分析 (1)求导,求得g(x)=2lnx+2-2x+2a,(x>0)求导,根据导数与函数单调性的关系,即可求得函数g(x)的极值;
(2)由(1)可知:必然存在x0>1,使得f(x)在(1,x0)单调递增,(x0,+∞)单调递减,且f′(x0)=0,求得a的表达式,存在a使得f(x)max=f(x0)=0,代入即可求得x0,即可求得a的值.

解答 解:(1)函数f(x)=2xlnx-x2+2ax,(x>0)求导,g(x)=f′(x)=2lnx+2-2x+2a,(x>0)
g′(x)=$\frac{2}{x}$-2=-$\frac{2(x-1)}{x}$,(x>0)
当0<x<1时,g′(x)>0,当x>1时,g′(x)<0,
g(x)在(0,1)单调递增;在(1,+∞)单调递减,
∴当x=1时,取极大值,极大值为g(1)=2a,无极小值;
(2)由(1)知:f′(1)=2a>0,且f′(x)在(1,+∞)单调递减,且x→+∞时,f′(x)<0,
则必然存在x0>1,使得f(x)在(1,x0)单调递增,(x0,+∞)单调递减;
且f′(x0)=2lnx0+2-2x0+2a=0,即a=-lnx0-1+x0,①
此时:当x∈[1,+∞)时,由题意知:只需要找实数a使得f(x)max=f(x0)=0,
f(x0)=2x0lnx0-x02+2ax0,将①式代入知:
f(x0)=2x0lnx0-x02+2ax0=2x0lnx0-x02+2x0(-lnx0-1+x0)=x02-2x0=0,
得到x0=2,从而a=-lnx0-1+x0=1-ln2,
∴a的值为1-ln2.

点评 本题考查导数的综合应用,考查导数与函数单调性及极值的关系,不等式恒成立,考查转化思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函数f(x)的最小值,并写出此时x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=1+t}\\{y=-t}\end{array}\right.$(t为參数) 以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程ρ+2rcosθ=0(r>0).
(I )求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)当r为何值时,曲线C 上有且只有3个点到直线l的距离为1?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$与向量$\overrightarrow{e_1}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数x,y满足$\left\{\begin{array}{l}x-2y+2≥0\\ x+y≤1\\ y+1≥0\end{array}\right.$且z=2x-y,则z的最大值为(  )
A.-7B.-1C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线W:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)一个焦点为F(2,0),若点F到W的渐近线的距离是1,则W的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四边形ABCD中,∠BAD=120°,∠BCD=60°,cos∠D=-$\frac{1}{7}$,AD=DC=2,
(Ⅰ)求 cos∠DAC 及AC 的长;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线$x-\sqrt{3}y-1=0$的倾斜角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直角梯形ABCD中AD∥BC.∠ABC=90°,AB=BC=2,DE=4,CE⊥AD于E,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$.
(Ⅰ)求证:BE⊥平面AD′C;
(Ⅱ)求平面D′AB与平面D′CE的所夹的锐二面角的大小.

查看答案和解析>>

同步练习册答案