精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1,求函数的单调区间:

2)对于任意,不等式恒成立,求实数的取值范围.

【答案】1)见解析(2

【解析】

1)求导后,按照分类,分别解出不等式,即可得解;

2)转化条件得对于任意,不等式恒成立,设,则,设,求导后可得上单调递增,进而可得,使得,即,则,设,求导后可得上单调递增,即可证,代入求出后,即可得解.

1)由题意

i)当时,的解集为,则的单调增区间为,单调减区间为

ii)当时,,则的单调增区间为,无单调减区间;

iii)当时,的解集为,则的单调增区间为,单调减区间为

iiii)当时,的解集为,则的单调增区间为,单调减区间为.

2)由已知,问题等价于对于任意,不等式恒成立,

,则

,则

上,单调递增,

,所以

所以,使得,即

上,单调递减;

上,单调递增;

所以

又有

,则有

所以在上,单调递增,所以

所以

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,如图将分别绕原点逆时针旋转得到曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)分别写出曲线的极坐标方程;

2)设两点,两点(其中均不与原点重合),若四边形的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是给定的平面,设不在内的任意两点MN所在的直线为l,则下列命题正确的是(

A.内存在直线与直线l异面

B.内存在直线与直线l相交

C.内存在直线与直线l平行

D.存在过直线l的平面与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDA1B1C1D1中,AA18AB3AD8,点M是棱AD的中点,点N是棱AA1的中点,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度的取值范围是(  )

A.B.[45]C.[35]D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测生产线上某种零件的质量,从产品中随机抽取100个零件,测量其尺寸,得到如图所示的频率分布直方图.若零件尺寸落在区间之内,则认为该零件合格,否则认为不合格.其中分别表示样本的平均值和标准差,计算得(同一组中的数据用该组区间的中点值作代表).

1)已知一个零件的尺寸是,试判断该零件是否合格;

2)利用分层抽样的方法从尺寸在的样本中抽取6个零件,再从这6个零件中随机抽取2个,求这2个零件中恰有1个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,曲线的方程为,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.若将曲线上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的倍,得曲线

1)写出直线和曲线的直角坐标方程;

2)设点 直线与曲线的两个交点分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是(

A.2019年全年手机市场出货量中,5月份出货量最多

B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小

C.2019年全年手机市场总出货量低于2018年全年总出货量

D.201812月的手机出货量低于当年8月手机出货量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

同步练习册答案