【题目】已知函数.
(1),求函数的单调区间:
(2)对于任意,不等式恒成立,求实数的取值范围.
【答案】(1)见解析(2)
【解析】
(1)求导后,按照、、与分类,分别解出不等式,即可得解;
(2)转化条件得对于任意,不等式恒成立,设,则,设,求导后可得在上单调递增,进而可得,使得,即,则,设,求导后可得在上单调递增,即可证,代入求出后,即可得解.
(1)由题意,
则,
(i)当时,的解集为,则的单调增区间为和,单调减区间为;
(ii)当时,,则的单调增区间为,无单调减区间;
(iii)当时,的解集为,则的单调增区间为和,单调减区间为;
(iiii)当时,的解集为,则的单调增区间为,单调减区间为.
(2)由已知,问题等价于对于任意,不等式恒成立,
设,则,
设,则,
在上,,单调递增,
又,,所以,
所以,使得,即,
在上,,单调递减;
在上,,单调递增;
所以,
又有,
设,则有和,
所以在上,单调递增,所以,
所以,
故实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线,如图将分别绕原点逆时针旋转,,得到曲线,,.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)分别写出曲线的极坐标方程;
(2)设交于两点,交于两点(其中均不与原点重合),若四边形的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是给定的平面,设不在内的任意两点M,N所在的直线为l,则下列命题正确的是( )
A.在内存在直线与直线l异面
B.在内存在直线与直线l相交
C.在内存在直线与直线l平行
D.存在过直线l的平面与平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=8,AB=3,AD=8,点M是棱AD的中点,点N是棱AA1的中点,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度的取值范围是( )
A.B.[4,5]C.[3,5]D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测生产线上某种零件的质量,从产品中随机抽取100个零件,测量其尺寸,得到如图所示的频率分布直方图.若零件尺寸落在区间之内,则认为该零件合格,否则认为不合格.其中,分别表示样本的平均值和标准差,计算得(同一组中的数据用该组区间的中点值作代表).
(1)已知一个零件的尺寸是,试判断该零件是否合格;
(2)利用分层抽样的方法从尺寸在的样本中抽取6个零件,再从这6个零件中随机抽取2个,求这2个零件中恰有1个尺寸小于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系中,曲线的方程为,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.若将曲线上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的倍,得曲线.
(1)写出直线和曲线的直角坐标方程;
(2)设点, 直线与曲线的两个交点分别为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是( )
A.2019年全年手机市场出货量中,5月份出货量最多
B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小
C.2019年全年手机市场总出货量低于2018年全年总出货量
D.2018年12月的手机出货量低于当年8月手机出货量
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com