精英家教网 > 高中数学 > 题目详情

已知在数列{}中,
(1)求证:数列{}是等比数列,并求出数列{}的通项公式;
(2)设数列{}的前竹项和为Sn,求Sn

(1)详见解析;(2)

解析试题分析:(1)要证明数列是等比数列,只需证明(常数),根据已知条件,将,代入整理,易得常数,首项,所以数列,从而解出的通项公式;
(2), 所以数列{}的前项的和分别是一个等比数列加一个常数列的和,等比数列是首项为2,公比为4的等比数列,常数列的前项的和为,两和相加即为最后结果.
(1),
所以数列是以2为首项,以4为公比的等比数列,         4分
;   所以            6分
(2).   12分
考点:1.等比数列的定义;2.等式数列的前项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前项和为,已知为常数),,(1)求数列的通项公式;(2)求所有满足等式成立的正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,.
(1)求的值;
(2)求证:是等比数列,并求的通项公式
(3)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项
(1)求证:是等比数列,并求出的通项公式;
(2)证明:对任意的
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•天津)已知数列{an}与{bn}满足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)设cn=a2n+1﹣a2n﹣1,n∈N*,证明{cn}是等比数列
(Ⅲ)设Sn为{an}的前n项和,证明++…++≤n﹣(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·随州模拟)已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式.
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知成等比数列, 公比为, 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在等比数列{an}中,=1,=3,则的值是         

查看答案和解析>>

同步练习册答案