精英家教网 > 高中数学 > 题目详情

(14分)(2011•天津)已知数列{an}与{bn}满足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)设cn=a2n+1﹣a2n﹣1,n∈N*,证明{cn}是等比数列
(Ⅲ)设Sn为{an}的前n项和,证明++…++≤n﹣(n∈N*

(Ⅰ)a2=﹣ a3=8(Ⅱ)(Ⅲ)见解析

解析试题分析:(Ⅰ)推出bn的表达式,分别当n=1时,求出a2=﹣;当n=2时,解出a3=8;
(Ⅱ)设cn=a2n+1﹣a2n﹣1,n∈N*,利用等比数列的定义,证明{cn}是等比数列;
(Ⅲ)求出S2n,a2n,S2n﹣1,a2n﹣1,求出+的表达式,然后求出++…++的表达式,利用放缩法证明结果.
(Ⅰ)解:由bn=,(n∈N*)可得bn=
又bn+1an+bnan+1=(﹣2)n+1,
当n=1时,a1+2a2=﹣1,可得由a1=2,a2=﹣
当n=2时,2a2+a3=5可得a3=8;
(Ⅱ)证明:对任意n∈N*,a2n﹣1+2a2n=﹣22n﹣1+1…①
2a2n+a2n+1=22n+1…②
②﹣①,得a2n+1﹣a2n﹣1=3×22n﹣1,即:cn=3×22n﹣1,于是
所以{cn}是等比数列.
(Ⅲ)证明:
a1=2,由(Ⅱ)知,当k∈N*且k≥2时,
a2k﹣1=a1+(a3﹣a1)+(a5﹣a3)+(a7﹣a5)+…+(a2k﹣1﹣a2k﹣3
=2+3(2+23+25+…+22k﹣3)=2+3×=22k﹣1
故对任意的k∈N*,a2k﹣1=22k﹣1
由①得22k﹣1+2a2k=﹣22k﹣1+1,所以k∈N*
因此,
于是,
=
=
所以,对任意的n∈N*++…++=(+)+…+(+
=
=
=n﹣
≤n﹣=n﹣(n∈N*
点评:本题考查等比数列的定义,等比数列求和等基础知识,考查计算能力、推理论证能力、综合发现问题解决问题的能力以及分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

数列{an}中,若a1=1,an+1=2an+3 (n≥1),则该数列的通项an=          .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项,且 
(1)求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知,,.
(1)求数列的通项公式;
(2)设数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在数列{}中,
(1)求证:数列{}是等比数列,并求出数列{}的通项公式;
(2)设数列{}的前竹项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通项公式.
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}成等比数列,且an>0.
(1)若a2-a1=8,a3=m.
①当m=48时,求数列{an}的通项公式;
②若数列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+ +ak+1- (ak+ak-1+ +a1 )=8,k∈N*,求a2k+1+a2k+2+ +a3k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,记的前项的和,
(1)判断数列是否为等比数列,并求出
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列,其前项和满足的等比中项.
(1)求数列的通项公式;
(2) 符号表示不超过实数的最大整数,记,求.

查看答案和解析>>

同步练习册答案