精英家教网 > 高中数学 > 题目详情
已知为R上的可导函数,且,均有,则有       (  )
A.
B.
C.
D.
D

试题分析:设函数=,则=-+=+<0,所以
g(x)单调递减 ,所以, 不选AB;
设函数h(x)=,则h'(x)=,所以h(x)单调递减,  h(2013)<h(0)  选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设函数的极值.
(2)证明:上为增函数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的极值点;
(2)对任意的,记上的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为常数.
(Ⅰ)若函数是区间上的增函数,求实数的取值范围;
(Ⅱ)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知函数
(1)若,求曲线在点处的切线方程;
(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求上的值域;
(2)求函数上的最小值;
(3)证明: 对一切,都有成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数) .
(1)当时,求函数上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足(x+2)f’(x)<0,又a=f(log0.53),b=f(()0.3),c=f(ln3),则(     )
A.a<b<cB.b<c<aC.c<a<bD.c< b<a

查看答案和解析>>

同步练习册答案